Segmenting Kidney on Multiple Phase CT Images using ULBNet

Yanling Chi, W. Huang et al.
Institute for Infocomm Research, A*STAR, Singapore 138632, chiyl@i2r.a-star.edu.sg

Introduction
There is semantic gap exists when segmenting kidney on multiple phase images or multiple center images. In this paper, we proposed an ULBNet to reduce the gap and to improve segmentation performance.

Method
The proposed architecture includes new skip connections of handcraft texture features. We also proposed a novel strategy of fast retraining a model for a new task without manually labelling required. We evaluated the network for kidney segmentation on multiple phase CT images.
1. A model was initially trained using public datasets close to our target;
2. The model was used to predict the datasets of the specific task;
3. Some best predictions are used as training data to retrain the model.
4. Repeat step 3, the predictions visually close to the desirable.
Experiment

Resolution preprocessing: the input volume datasets are of $80 \times 160 \times 160$ and $3.22\,mm \times 2.03\,mm \times 2.03\,mm$.

Data Augmentation: datasets resulted from transformation of flips, jittering, Gaussian blur, scaling, rotation, and shears.

Image Normalization: All the training set, validation set and testing set were cast to window level (-120, 300) where -120 was standard Hounsfield value of fat and 300 was of contrast-enhanced CT.

Training Procedure: The patch size was set to $80 \times 160 \times 160$ and the batch size was set to 1. The learning rate was initialized as 3×10^{-4}, and drops by a factor of 0.2. Training was done on Nvidia Quadro RTX 5000 (single GPU training). All network architectures were implemented on the tensorflow framework.

Results

Based on the model trained using public corticomedullary phase images, retraining strategy was employed to generalize the model to kidney segmentation on multiple phase CT images. The model was tested on multiple phase images and the results were shown in Table II. An accuracy of 97.97% was achieved, and the accuracy on public corticomedullary phase images was 97.17%.

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>multiple phase images</td>
</tr>
<tr>
<td>Before retraining</td>
<td>0.9349</td>
</tr>
<tr>
<td>After retaining</td>
<td>0.9797</td>
</tr>
</tbody>
</table>

TABLE II. MODEL PERFORMANCE ON MULTI-PHASES DATASETS
The work is partially funded by A*STAR funding ACCL/19-GAP035-R20H.

Conclusions

A new skip connection is added on Resnet to bring the handcraft LBP texture features from encoder to decoder pathways at same level. It made the network generalize well to the multiple phase images.

Before retaining strategy applied, it can be observed that performance of ULBNet superseded to Resnet on both segmenting multiple phase and single phase images.

The ULBNet, by nature, has good property of generalization for kidney segmentation compared with Resnet.

After retraining strategy applied, both ULBNet and Resnet models learned to segment kidney from multiple phase CT images, and ULBNet still performed better than Resnet.

TABLE III. MODEL COMPARISON ON GENERALIZATION

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>Before retraining</th>
<th>After retraining</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ULBNet(^{16})</td>
<td>Resnet(^{16})</td>
</tr>
<tr>
<td>Overall</td>
<td>0.9349</td>
<td>0.8854</td>
</tr>
<tr>
<td>PP</td>
<td>0.8927</td>
<td>0.8033</td>
</tr>
<tr>
<td>CMP</td>
<td>0.9711</td>
<td>0.9685</td>
</tr>
<tr>
<td>NP</td>
<td>0.9710</td>
<td>0.9692</td>
</tr>
<tr>
<td>EP</td>
<td>0.9367</td>
<td>0.8864</td>
</tr>
</tbody>
</table>

Acknowledgment

The work is partially funded by A*STAR funding ACCL/19-GAP035-R20H.
References

