25th International Conference on Pattern Recognition. January 10-15, 2021

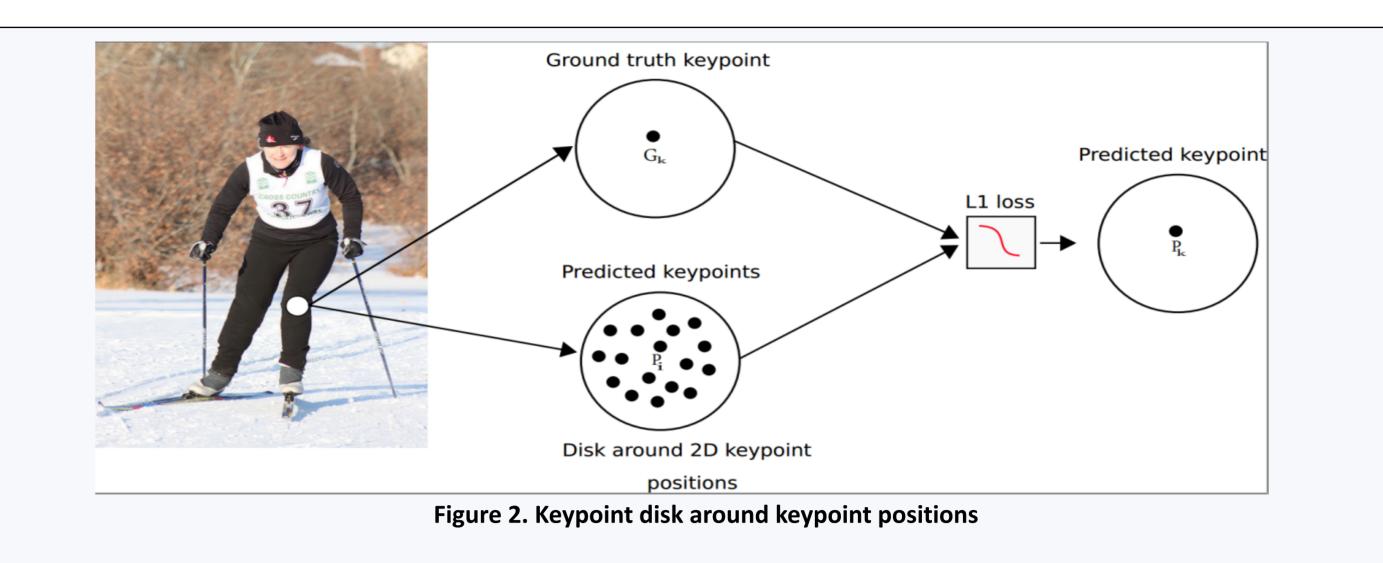
StrongPose: Bottom-up and Strong Keypoint Heat Map Based Pose Estimation

Niaz Ahmad and Jongwon Yoon

Hanyang University, South Korea

Abstract

- We present StrongPose system that detects strong keypoint heat maps and predicts their comparative displacements, allowing keypoints to be grouped into human instances.
- StrongPose utilizes the keypoints to generate body heat maps that can determine the position of the human body in the image.
- Evaluation results show that our framework achieves average precision of 0.708 using ResNet-101 and 0.725 using ResNet-152, outperforms prior bottom-up frameworks.



To increase the keypoint localization precision we predict keypoint offset

Figure 2 illustrates the loss between P_i and G_k panelized by L1 loss.

with the ground truth position G_k in the keypoint disk.

The purpose of $V_{k(x)}$ is to compare the predicted 2D keypoint position P_{i}

Motivation

- Human pose estimation allows for higher-level reasoning in the context of human-computer interaction and activity recognition.
- Accurate keypoint localization for pose estimation can increase the reliability of applications that require human detection.
- The following figures shows some challenging scenarios for keypoints identification e.g., overlapping, occlusion and tangled keypoints.

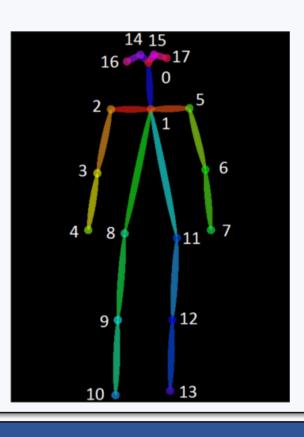
StrongPose System

Strong Keypoints Heat Map (SKHM) Ground Truth Keypoint

Pose plot The pose plot module defines associations between the keypoints as tuples.

vector Vk(x) for each keypoint.

It groups all the associated keypoints into a human instance.



Performance Evaluation

Table.1 shows evaluation on Val2017 Dataset.

- 5.7 % in AP compare to Hourglass
- 2.2 % in AP compare to CPN
- 1.2 % in AP compare to CPN (OHKM)
- 11.0 % in AP compare to CMU-Pose
- 4.1 % in AP compare to PersonLab

Table. 1 Performance on COCO keypoint Val2017 Dataset

Method	Backbone	Input Size	OHKM	AP	AR
Top-down:					
8-stage Hourglass	-	156 x 192	×	0.669	-
8-stage Hourglass	-	156 x 156	×	0.671	-
CPN	ResNet-50	256 x 192	×	0.686	-
CPN	ResNet-50	384 x 288	×	0.706	-
CPN	ResNet-50	256 x 192	\checkmark	0.694	-
CPN	ResNet-50	384 x 288	\checkmark	0.716	-
HRNet-W48	HRNet-W48	384 x 288	×	0.763	0.812
Bottom-up:					
CMU-Pose	-	-	×	0.618	-
PersonLab(single-Scale)	ResNet-152	-	×	0.665	0.707
PersonLab(multi-scale)	ResNet-152	-	×	0.687	-

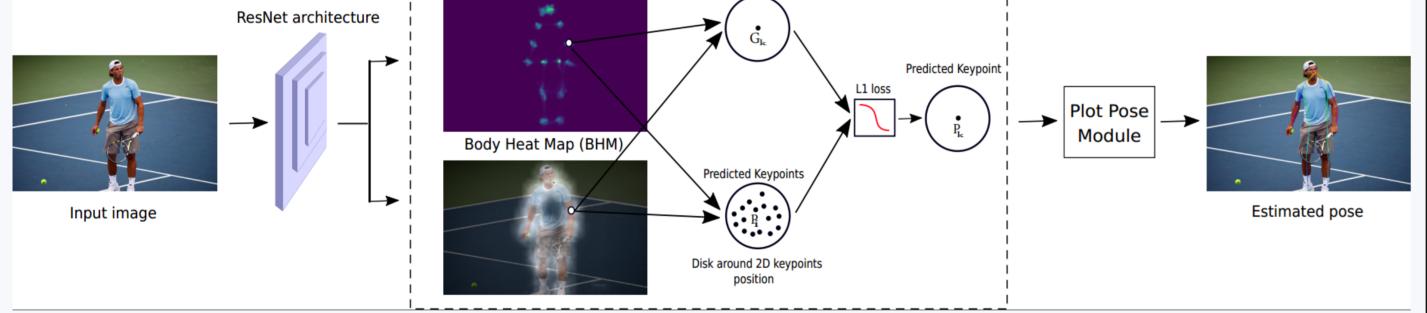
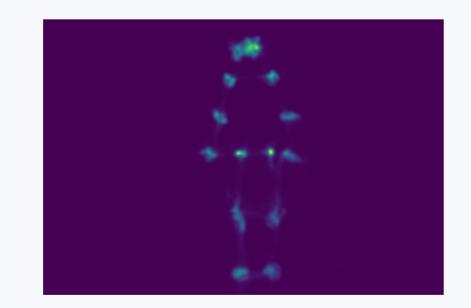


Figure 1. StrongPose model

- Figure 1 depicts an overview of the *StrogPose* system consist of pose estimation module and Plot Pose Module.
- The system uses ResNet as a backbone network and follows bottom-up approach for keypoint identification.

Strong Keypoint Heat Map (SKHM)



- The SKHM is generated for all hard and soft keypoints.
- The role of the SKHM is to correctly localize and produce the heat map for each keypoint. Details are explained in bellow:
 - Suppose p_i (2D keypoint position)

ongPose	ResNet-101	-	×	0.690
ongPose	ResNet-152	-	×	0.728

0.800

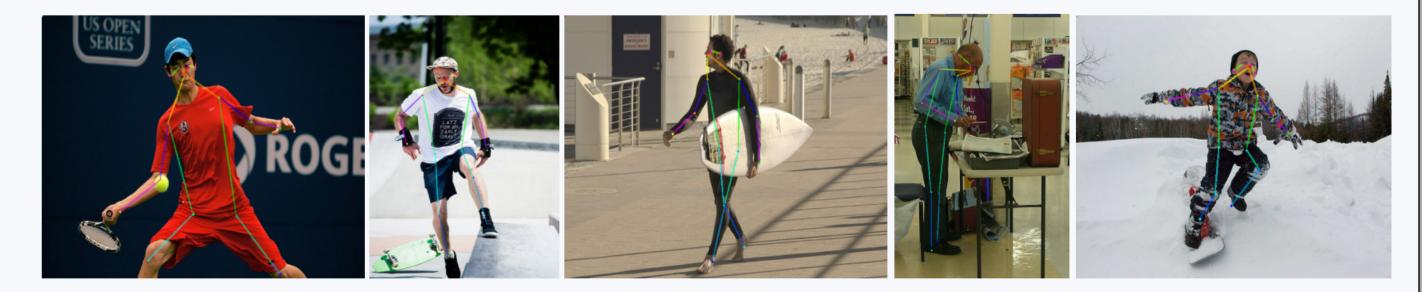
Table.2 shows evaluation on Test2017 Dataset.

- 9.4 % in AP compare to Mask-RCNN
- 7.6 % in AP compare to G-RMI
- 0.4 % in AP compare to CPN
- 10.7 % in AP compare to CMU-Pose
- 7.0 % in AP compare to Assoc
- 3.8 % in AP compare to PersonLab
- 2.9 % in AP compare to MultiPoseNet

Method	AP	AP ^{.50}	AP ^{.75}	AP^M	AP^L
Top-down:					
Mask-RCNN	0.631	0.873	0.687	0.578	0.714
G-RMI COCO-only	0.649	0.855	0.713	0.623	0.700
CPN	0.721	0.914	0.800	0.687	0.772
Bottom-up:					
CMU-Pose (+refine)	0.618	0.849	0.675	0.571	0.682
Assoc. Embed(single-Scale)	0.630	0.857	0.689	0.580	0.704
Assoc. Embed(mscale,refine)	0.655	0.879	0.777	0.690	0.752
PersonLab (single-scale)	0.665	0.880	0.726	0.624	0.723
PersonLab (multi-scale)	0.687	0.890	0.754	0.641	0.755
MultiPoseNet	0.696	0.863	0.766	0.650	0.763
StrongPose:					
ResNet101	0.708	0.889	0.752	0.652	0.753
ResNet152	0.725	0.891	0.778	0.671	0.762

Visualization Results

Single-person pose estimation

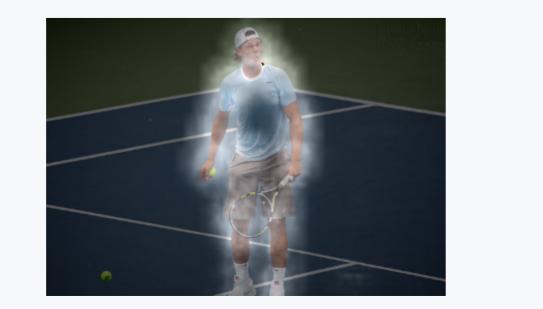


Multi-person pose estimation

 \blacktriangleright Let $D_R(q) = p: ||p - q|| \le R(R \text{ is a disk radius centered around } q)$ \succ R = 16 pixels

 \succ Let $q_{j,k}$ (2D position of k-th keypoint of the j-th person instance) > Predicted Keypoint heatmap pk(h) = 1 if $h \in D_R(q_{i,k})$ otherwise pk(h) = 0

Body Heat Maps (BHM)



- The BHM is generated on the same manner as the SKHM.
- BHM helps to correctly localize the human body in the image.
- BHM also provides us the advantage of person detection without the concept of a bounding box.

Conclusion and Future Work

- We proposed a bottom-up model, *StrongPose*, that jointly tackle the problem of pose estimation and person detection.
- The effectiveness of the proposed model is evaluated using the COCO 2017 keypoint challenging dataset. Evaluatation results show significant increase in AP compare to other models.
- In the future work we will enhance the *StrongPose* system to understand human body language and capturing their actions in live environment.