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Contributions Synthetic video clip generation

* Propose to employ the mask-propagation-based model to
learn the past and current information without any online
fine-tuning

* Adapts to the shape variance of target objects well with
generated image/mask pairs from training videos

» Adapts to object motions by training on inserted frames
generated based on two adjacent frames
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_ _ _ * ODbject Deformation Simulation
* Object deformtlon and motlons | « Conduct translation and deformation on the foreground objects

 Motion Simulation
* Introduce smooth intermediate transformation among two key
frames and model the natural development between
consecutive frames

Experiments

e _ _ * Quantitative Evaluation
 Difficult to adapt to the shape variance of target object
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 Unsatisfying performance on the semi-supervised task RGMP 139 ' e o 1 s S o
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 Backbone * Qualitative Evaluation

* Resnet50 as the backbone feature extractor
* An additional channel for the pixel-level mask besides
RGB channels
* Obtains the knowledge from past frames and maintains
a temporal coherence explicitly
* Fusion Module
» Taking the feature streams of the initial frame and the
current frame as inputs and build a connection between
these two frames ;
» Learn the target appearance information
* Adopt a GCN to enlarge the effective receptive field and .
support global feature matching
* Upsampling Module
* Produce a soft segmentation y,
» Use the coarsely predicted mask for segmentation of
the following frame, in order to localize target object

Inference
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» Treat video sequences with multiple objects as several single-object

segmentation problems Metric Baseline | +Past | +Past+Def | +Past+Def+Motion
 Other targets are viewed as the background. L5 ) Mean J 1 55.6 60.5 66.1 67.5
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