AVAE: Adversarial Variational Auto Encoder

Antoine Plumerault^{*,†}, Hervé Le Borgne^{*}, Céline Hudelot[†]

*: CEA List, †: Centrale Supelec

Two main types of generative models

٠	VAEs	have	several	advantages	over	GANs
---	------	------	---------	------------	------	------

GAN	VAE	
+ realistic images	+ disentangled latent space	
 mode collapse 	+ encoder model	
- difficult to invert	+ easy to train	
	 blurry images 	

Problematic: VAE fail to produce realistic images (w.r.t GANs)

- How can we explain this lack of realism ?
- Can we combine the best of VAEs and GANs ?

Which problem for VAEs to produce realistic images ?

1. Information bottleneck:

$$\mathcal{L}_{\text{VAE}} = \underbrace{\mathbb{E}\left[\mathbb{E}_{q_{\theta_{e}}(z|x)}\left[-\log p_{\theta_{d}}(x|z)\right]\right]}_{\text{reconstruction error}} + \underbrace{l_{\theta}(x;z)}_{\text{mutual information}}$$
(1)
+
$$\underbrace{\mathsf{KL}(p_{\theta_{e}}(z)||p(z))}_{\text{Figure 1}}$$

prior on z

- \rightarrow incomplete information
- \rightarrow mean value of all possible images
- \rightarrow blurry results
- 2. Underestimation of natural image manifold dimensionality:
 - \rightarrow approximation of the manifold with a simpler one
 - \rightarrow uncertainty on other dimensions responsible of smaller variations (e.g. textures)
 - \rightarrow mean value of all possible images
 - \rightarrow blurry results (no texture in images)

How GANs are able to produce realistic images ?

GANs also underestimate the dimension of the natural image manifold.

- \rightarrow Question: How are they able to produce realistic images ?
- \rightarrow Answer: Mode collapse ! \rightarrow only a few but plausible texture configurations are generated.

Illustration on a toy example

dots: data dotted line: dashed line: points VAE manifold GAN manifold

How to solve the VAE problem ?

Objective: Create a reconstruction error $\mathcal{L}_{\mathcal{Z}}$: convert -density 400 input.pdf

picture.pngthat is powerful enough to favor accurate reconstructions.that does not favor blurry reconstruction to allow realistic reconstructions.

- cylinders: real data high-dimensional manifold
- black line: low-dimensional manifold of VAEs reconstructions
- arrows: gradient of different losses

What properties such a reconstruction loss should satisfy ?

With reconstruction errors of the form $\mathcal{L}_{\mathcal{Z}}(\hat{x}, x) = \frac{1}{2} ||f(\hat{x}) - g(x)||^2$ where:

- f is an arbitrary differentiable function
- g is a stochastic function

Optimal solutions $\hat{x}^*(z)$ verifies:

 $f(\hat{x}^*(z)) = \mathbb{E}_{g(x) \sim p_{\theta_e}(g(x)|z)}[g(x)]$ (2)

- f(x̂) should carry the maximum of information about x̂ and g(x) should be close to f(x).
- Common optimum with the GAN objective $\iff p(f(\hat{x}^*(z))) = p(f(x))$ for $z \sim p(z)$ and $x \sim p_D(x)$.

A simple example: the MSE

 $\mathcal{L}_{\mathcal{Z}}(\hat{x}, x) = MSE(\hat{x}, x) = \frac{1}{2} ||\hat{x} - x||^2 \rightarrow \text{optimal solution:}$

 $\hat{x}^*(z) = \mathbb{E}_{x \sim p_{\theta_e}(x|z)}[x]$ (3)

- f(x̂) carry all the information about x̂ as it is the identity, and g(x) = f(x).
- Optimal solution = mix of likely solutions
 → blurry / unrealistic image.
 p(f(x̂*(z))) = p(x̂*(z)) ≠ p(x) =

p(f(x)) for $z \sim p(z)$ and $x \sim p_{\mathcal{D}}(x)$.

The AVAE framework

With:

$$f(\hat{x}) = \frac{\mu_{\theta_e}(\hat{x})}{\sigma_{\theta_e}}$$

$$g(x) = \frac{\sqrt{1 - \sigma_{\theta_e}^2}}{\sigma_{\theta_e}} z$$

$$\mathcal{L}_{\mathcal{Z}}(\hat{x}) = \frac{1}{2} \left\| \frac{\mu_{\theta_e}(x) - \sqrt{1 - \sigma_{\theta_e}^2} z}{\sigma_{\theta_e}} \right\|^2$$
(4)

- $f(\hat{x})$ carry the information about \hat{x} contained in z, and $g(x) = \frac{\sqrt{1-\sigma_{\theta_e}^2}}{\sigma_{\theta_e}} z \approx \frac{\mu_{\theta_e}(x)}{\sigma_{\theta_e}} = f(x)$
- $\mu_{\theta_{e}}(\hat{x}^{*}(z)) = \sqrt{1 \sigma_{\theta_{e}}^{2}} z \rightarrow p(\mu_{\theta_{e}}(\hat{x}^{*}(z))) = \mathcal{N}(\mu_{\theta_{e}}(x); 0, I \Sigma) = p(\mu_{\theta_{e}}(x)).$

Results

Quantitative results on CelebA:

		$MSE\downarrow$	LPIPS \downarrow	FID ↓	
	VAE	0.03 ± 0.00	0.18 ± 0.00	60.04 ± 0.47	
	GAN	_	_	14.54 ± 0.41	
ŀ	VAE/GAN	0.07 ± 0.00	0.09 ± 0.00	26.45 ± 4.66	
	BiGAN	0.18 ± 0.01	0.16 ± 0.00	18.49 ± 5.06	
	Ours	0.05 ± 0.00	0.11 ± 0.00	15.01 ± 0.82	

- MSE: favorable to the VAE a priori.
- MSE: favorable to our approach a priori.
- LPIPS & FID: favorable to VAE/GAN a priori.

Qualitative results:

