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Introduction

• Ductal Regions are Important for Breast Cancer Diagnosis [4]
• Breast Cancer Often Starts within Ducts or Lobules [6]
• Traditional Pattern Recognition Tools Can Hardly Extract Each Duct from

Conglomerated Region
• Deep Learning-based Instance Segmentation Model (e.g. [2]) Could Help
• Instance Segmentation-Labeling is a Tedious and Time-Consuming Task

Figure 1: Duct instances: From Left to Right: the input image in RGB
color space; (b) the binary image inferred from tissue-level semantic
segmentation; (c) duct instances found by mathematical morphology
and connected component algorithm; (d) the ducts inferred from our

system.

Data and Annotation

• Digital Whole Slide Images from Residual Breast Biopsy Material [5, 7, 1]
• No Instance Segmentation Labels
• Total 428 Histopathological ROIs
• 4 Classes: Benign, Atypia, Ductal Carcinoma in Situ, or Invasive Cancer
• Existing Semantic Segmentation Model [3] for Semantic Segmentation

Figure 2: Weakly Supervised Annotation Interface.

• Weakly Supervised Annotation Tool
• Human-AI Collaboration
• AI-Guided Weak Annotation for Human Annotator
• Generate Instance Segmentation Label as Silver Standard
• Labelled 100 ROIs to Train Instance Segmentation Model

DIOP System

• Mask R-CNN for Instance Segmentation
• Y-Net for Semantic Segmentation
• Traditional Feature Extraction: Frequency Features, Co-Occurrence Features
• Features from 3 Different Levels

Figure 3: Dimension reduction and visualization based on
Unsupervised UMAP algorithm. Each dot is colored based on its

subtype labels provided by UW and FHCRC.

Figure 4: Testing Results for Instance Segmentation. Compare to the
Silver Standard, the mIoU is 72%

Results

• Outperforms Previous Approaches
• Reaches Human Expert’s Performance
• Faster than Superpixel-based Approaches
• Combining Three Levels of Features Improves the Results

Figure 5: Comparison with SOTA Methods: Cascade Binary
Classification Model

Figure 6: Comparison with SOTA Methods: Four-Way Classification

Takeaways
• More Clinical Studies are Needed
• Weak Annotation is a Effective Tool for Medical Analysis
• Doctor-AI Collaboration could Benefit Both Communities
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