

Quasibinary Classifier for Images with Zero and Multiple Labels

Shuai Liao, Efstratios Gavves, ChangYong Oh, Cees Snoek

Motivation

Consider a classification problem with *K*=3 classes: { *Bird*, *Cat*, *Dog* }.

One-vs-rest problem

[√]Bird []Cat []Dog

(I) Softmax classifier

Use the prior #label=1.

Scale-up to a large number of classes. Stable to train.

X Unable handle 0/N-label classification.

Softmax activation:

Sigmoid activation:

 $p_k = \frac{\exp(z_k)}{1 + \exp(z_k)}$

$$p_k = \frac{\exp(z_k)}{\sum_i \exp(z_i)}$$

Multi-label problem

[]Bird <mark>[√]</mark>Cat <mark>[√]</mark>Dog

(II) Ensemble of binary classifiers

Flexible to handle 0/N-label classification.

- **X** Lack of correlation: independently trained.
- **X** Do not scale-up to a large number of classes.
- **X** Unstable to train.

Zero-label problem

[]Bird []Cat []Dog

Observation: Binary classifier and softmax have similar form. The difference is on the denominator (normalization factor).

Method

Goal: Learn a normalization function C(X) that is shared across entire dataset $X = \{x^{(i)}\}$ and classes.

Probability for image x in being k-th class has the form: $p(y = k|x) = q_k = \frac{\exp(z_k)}{C(X)}$

$$p(y = k|x) = q_k = \frac{\exp(z_k)}{C(X)}$$

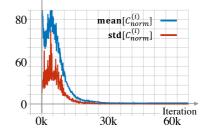
, that is constrained by:

- Prior knowledge $\sum_{k=1}^{K} q_k = \#lable$ for each image (*See proof in paper*.)
- Valid probability range $q_k^{(i)} \in [0,1]$.

Training: Maximize Likelihood Estimation, while

- 1) Computing C(X) over a mini-batch $\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \exp(z_k^{(i)})/C = \sum_{k=1}^{\infty} \# label^{(i)}$
- 2) Minimizing $-\max(\log q_k^{(i)}, 0)$ (Penalize any violation of $q_k^{(i)} > 1$).

Test: Use the learned constant C: $q_k = \min(\exp(z_k)/C, 1)$



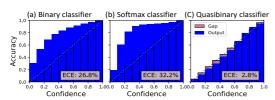
C(X) converges to a constant during training

Experiment

Multi-label image classification

Setup: Follow Li *et al. CVPR*2017.

	MS-COCO		NUS-WIDE	
	$F_1 \uparrow$	ECE(%)↓	$F_1 \uparrow$	ECE(%)↓
Binary classifier [16], [18], [30] Softmax [31] Softmax w/ temperature [32]	51.2 54.7 54.7	26.8 32.2 31.4	40.7 43.2 43.2	23.6 25.8 24.6
Quasibinary classifier	54.7	2.8	43.5	3.3



Reliability diagrams for multi-label classification

Conclusion: Quasibinary classifier is both accurate and credible.

One-vs.-rest image classification (single-label)

Setup: Resnet18 with 32x32 and 224x224 input.

	CIFAR10	CIFAR100	Tiny-ImageNet	ImageNet
Binary classifier	4.8	35.4	×	×
Quasibinary classifier (Ours)	4.9	21.9	42.9	25.4
Softmax classifier	5.2	22.2	43.3	23.9

Conclusion: Quasibinary classifier is better than binary classifier, and comparable with softmax classifier.

Zero-label image classification

Setup: CIFAR60+40 dataset, with 40 classes of images from original CIFAR100 being treated as 0-label.

	IN	OUT	BOTH
	Accuracy ↑	MMC ↓	AU-ROC↑
Binary classifiers [16], [18], [30]	77.8 % 80.7 % 45.2 %	14.7 %	0.901
Softmax + $\mathcal{L}_{\text{Uniform}}$ [6]		59.8 %	0.800
Softmax + $\mathcal{L}_{\text{MaxConf}}$ [11]		7.4 %	0.764
Quasibinary classifier	80.6 %	6.9 %	0.913

Conclusion: Quasibinary classifier achieves good performance on all measures.