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Motivation

1. Hierarchical data benefits fromHyperbolic space.

2. Can probabilistic inference problems benefit from appropriate geometric biases? Yes!

Wrapped Normal Distribution

1. WrappedNormal Distribution - Gaussian-like distribution but constructed on the Lorentz

Model of hyperbolic geometry [2].

2. Construct Gaussian-like distribution on the tangent space at µ0 = 0. Use Parallel Transport and
Exponential Map tomap to a Riemannian manifold.

Fig Credits: [2], [Nickel-Kiela, 2017].

Application- ProbabilisticWord Embeddings

1. Map lexically distributed representations to density, instead of point vectors.

2. Gaussian-like distribution constructed on the LorentzModel.

ProbailisticWord Embeddings

Canwe go beyond hyperbolic spaces for more powerful representations?

Our Contributions

1. Kinematic space - auxiliary Lorentzian space for Deep Representation Learning.

2. Using Kinematic space, we showHUP 
Ks
de Sitter space.

3. Map word representations to Gaussian-like distribution constructed on de Sitter space.

BetterMAP and Rank.

Kinematic Space

1. An auxiliary Lorentzian geometry inspired by Theoretical Physics [1] and Integral Geometry [4].

2. Powerful mathematical formalism that can transform geometrical information such as geodesic

distance and exponential map from one space to another.

3. How? Using -

Crofton’s Formula

Length = 1
4

∫ 2π

0
dθ

∫ +∞

−∞
η(θ, l)dl (1)

Length of a curve can be re-interpreted as volume of intersecting lines (geodesics). The space of

oriented geodesics - Kinematic space.

deS2

The de Sitter space is a maximally symmetric, Lorentzian manifold with constant positive

curvature. Let deS2 be the (d + 1) dimensional de Sitter space in the (d + 2) dimensional

Minkowski spaceM visualized as a single sheeted hyperboloid with pseudo-radius λ given by
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n = λ2 = 1
K . The induced distance function is given by

ddeS2(x, y) = λ arcosh
(

−〈x, y〉L
λ2

)
(2)

de Sitter space (deS2) as the Kinematic Space

1. We propose to use Poincaré upper half planemodel (HUP ) of hyperbolic geometry to construct

Gaussian-like distribution.

2. Rarely considered in literature - Computationally Intractable.

3. HUP 
Ks
de Sitter space.

Learning inHUP is equivalent to learning in deS2!

Figure 1. (Left) The de Sitter space can be visualized as a single sheeted hyperboloid inMinkowski space. A geodesic γ
drawn on the Upper half planemodel can be interpreted as a single point in de Sitter space.(Right) Curves drawn in

hyperbolic spaceH2 and their corresponding Kinematic space.

Wrapped Normal Distribution in deS2

1. Sampling a vector v from the Gaussian distributionN (0, Σ) defined overRn.

2. Parallel transporting v from the tangent space o to the tangent space of new point u to obtain j
by using the formula,

PTo→u(v) = v + K〈y, u〉L
1 + K〈o, u〉L

(o + u) (3)

3. Map the point j to themanifold using the exponential map at u given by

expx(v) = cosh(
√

K||v||L)x + v
sinh(

√
K||v||L)√

K||v||L
(4)

To calculate the probability density of GdeS2(µ, Σ),

log g(z) = log g(v) − (n − 1) log
(

sinh ||j||
||j||

)
(5)

where, log g(z) is the wrapped normal distribution and log g(v) is the normal distribution in tangent

space of o.

Application - ProbabilisticWord Embeddings in Kinematic Space

Table 1.We compare our probabilistic word embedding framework with [5] and [2] which also maps word

representations to a density on theWordNet-Noun hierarchy dataset.

Euclid Hyperbolic Ours

Dimension Rank MAP Rank MAP Rank MAP

5 70.15± 3.76 0.15± 0.01 90.81± 8.01 0.20± 0.01 4.23± 2.98 0.53± 0.13

10 24.06± 8.85 0.43± 0.02 15.67± 4.78 0.53± 0.07 1.43± 0.01 0.86± 0.12

20 13.63± 1.69 0.65± 0.04 8.27± 2.59 0.71± 0.06 2.05± 1.33 0.94± 0.06

50 6.43± 2.17 0.75± 0.05 4.84± 0.95 0.74± 0.01 1.50± 0.23 0.97± 0.00

Table 2.We compare our proposedmethod and the hyperbolic version [2] with the deterministic embeddings

framework proposed by authors in [3] on theWordNet-Noun dataset.

Poincaré [3] Hyperbolic Ours

Dimension Rank MAP Rank MAP Rank MAP

5 4.9± 0.00 0.823± 0.00 90.81± 8.01 0.20± 0.01 4.23± 2.98 0.53± 0.13

10 4.02± 0.00 0.851±0.00 15.67± 4.78 0.53± 0.07 1.43± 0.01 0.86± 0.12

20 3.84± 0.00 0.855± 0.00 8.27± 2.59 0.71± 0.06 2.05± 1.33 0.94± 0.06

50 3.98± 0.00 0.86± 0.00 4.84± 0.95 0.74± 0.01 1.50± 0.23 0.97± 0.00
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