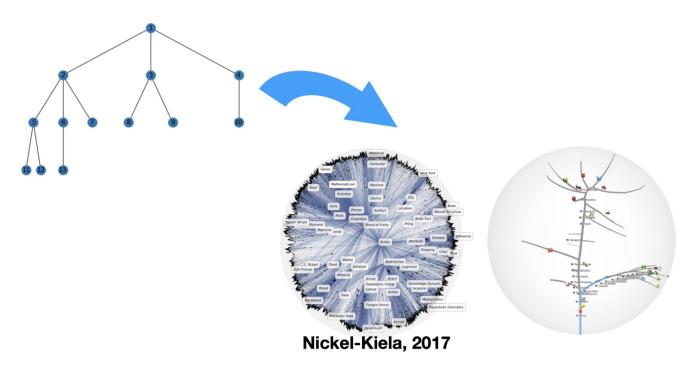


Motivation

. Hierarchical data benefits from Hyperbolic space.



2. Can probabilistic inference problems benefit from appropriate geometric biases? Yes!

Wrapped Normal Distribution

- 1. Wrapped Normal Distribution Gaussian-like distribution but constructed on the Lorentz Model of hyperbolic geometry [2].
- 2. Construct Gaussian-like distribution on the tangent space at $\mu_0 = 0$. Use Parallel Transport and Exponential Map to map to a Riemannian manifold.

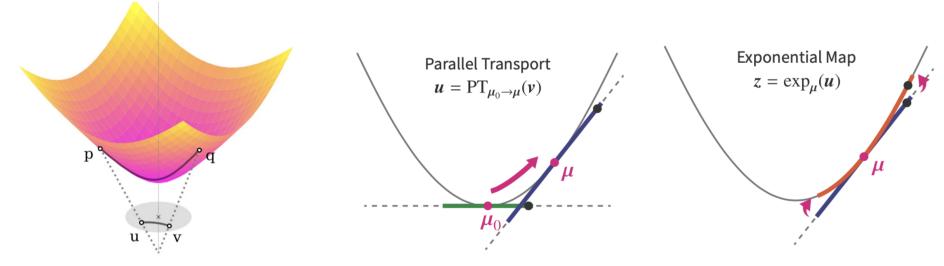
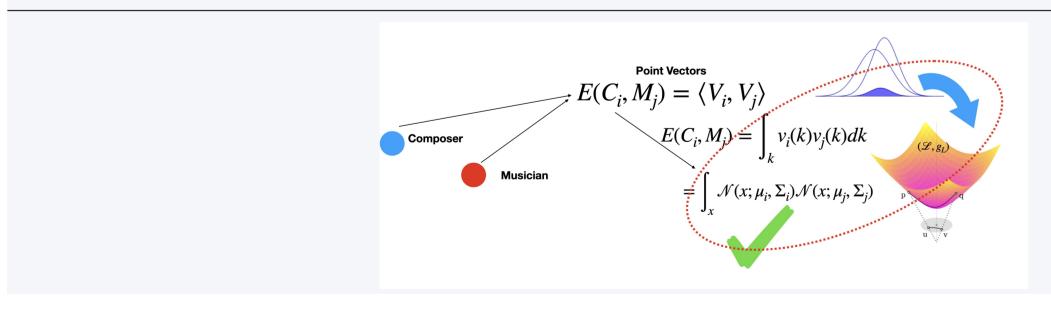


Fig Credits: [2], [Nickel-Kiela, 2017].

Application- Probabilistic Word Embeddings

- . Map lexically distributed representations to density, instead of point vectors.
- 2. Gaussian-like distribution constructed on the Lorentz Model.

Probailistic Word Embeddings



Can we go beyond hyperbolic spaces for more powerful representations?

Our Contributions

- 1. Kinematic space auxiliary Lorentzian space for Deep Representation Learning.
- 2. Using Kinematic space, we show $\mathbb{H}_{UP} \rightleftharpoons_{\mathcal{K}_s}$ de Sitter space.
- 3. Map word representations to Gaussian-like distribution constructed on de Sitter space. Better MAP and Rank.

Probabilistic Word Embeddings in Kinematic Space

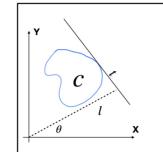
Adarsh Jamadandi

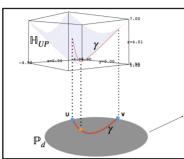
Rishabh Tigadoli² Ramesh Tabib¹

¹KLE Technological University, Hubli, India. 2 Mercedes Benz R and D Centre, Bangalore, India.

Kinematic Space

- 1. An auxiliary Lorentzian geometry inspired by Theoretical Physics [1] and Integral Geometry [4].
- 2. Powerful mathematical formalism that can transform geometrical information such as geodesic distance and exponential map from one space to another.





3. How? Using -

Crofton's Formula

Length =
$$\frac{1}{4} \int_0^{2\pi} d\theta \int_{-\infty}^{+\infty} \eta$$

Length of a curve can be re-interpreted as volume of intersecting lines (geodesics). The space of oriented geodesics - Kinematic space.

$$de \mathbb{S}_2$$

The de Sitter space is a maximally symmetric, Lorentzian manifold with constant positive curvature. Let deS_2 be the (d + 1) dimensional de Sitter space in the (d + 2) dimensional Minkowski space \mathbb{M} visualized as a single sheeted hyperboloid with pseudo-radius λ given by $-z_0^2 + z_1^2 + z_3^2 + \ldots + z_n^2 = \lambda^2 = \frac{1}{K}$. The induced distance function is given by

$$d_{de \mathbb{S}_2}(\mathbf{x}, \mathbf{y}) = \lambda \operatorname{arcosh}\left(\frac{-\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}}{\lambda^2}\right)$$
(2)

de Sitter space (deS_2) as the Kinematic Space

- 1. We propose to use Poincaré upper half plane model (\mathbb{H}_{UP}) of hyperbolic geometry to construct Gaussian-like distribution.
- 2. Rarely considered in literature Computationally Intractable.
- 3. $\mathbb{H}_{UP} \rightleftharpoons_{\mathcal{K}_s}$ de Sitter space.

Learning in \mathbb{H}_{UP} is equivalent to learning in $de\mathbb{S}_2!$

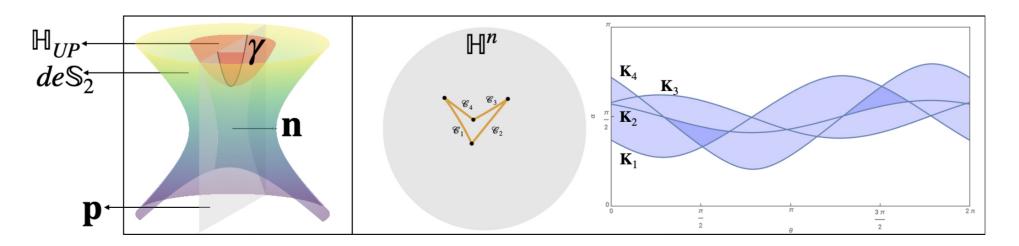
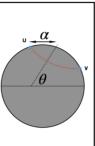


Figure 1. (Left) The de Sitter space can be visualized as a single sheeted hyperboloid in Minkowski space. A geodesic γ drawn on the Upper half plane model can be interpreted as a single point in de Sitter space. (Right) Curves drawn in hyperbolic space \mathbb{H}^2 and their corresponding Kinematic space.

Uma Mudenagudi¹



 $\eta(\theta, l)dl$ (1)

Wrapped Normal Distribution in deS_2

- by using the formula,

 $PT_{\mathbf{o}\to\mathbf{u}}$

3. Map the point \mathbf{j} to the manifold using the exponential map at \mathbf{u} given by

$$\exp_{x}(\mathbf{v}) = \cosh(\sqrt{K}||\mathbf{v}||_{\mathcal{L}})\mathbf{x} + \mathbf{v}\frac{\sinh(\sqrt{K}||\mathbf{v}||_{\mathcal{L}})}{\sqrt{K}||\mathbf{v}||_{\mathcal{L}}}$$
(4)

To calculate the probability density of $\mathcal{G}_{de\mathbb{S}_2}(\mu, \Sigma)$,

 $\log g(\mathbf{z}) = \mathbf{k}$

where, $\log g(\mathbf{z})$ is the wrapped normal distribution and $\log g(v)$ is the normal distribution in tangent space of **o**.

Application - Probabilistic Word Embeddings in Kinematic Space

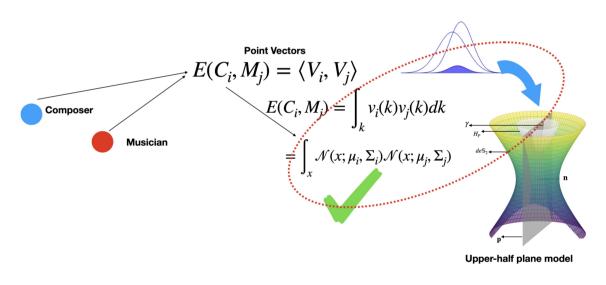


Table 1. We compare our probabilistic word embedding framework with [5] and [2] which also maps word representations to a density on the WordNet-Noun hierarchy dataset.

Euclid			Hyperbolic		Ours	
Dimension	Rank	MAP	Rank	MAP	Rank	MAP
5	70.15 ± 3.76	0.15 ± 0.01	90.81 ± 8.01	0.20 ± 0.01	$\textbf{4.23} \pm \textbf{2.98}$	$\textbf{0.53} \pm \textbf{0.13}$
10	24.06 ± 8.85	0.43 ± 0.02	15.67 ± 4.78	0.53 ± 0.07	$\textbf{1.43} \pm \textbf{0.01}$	0.86 ± 0.12
20	13.63 ± 1.69	0.65 ± 0.04	8.27 ± 2.59	0.71 ± 0.06	$\textbf{2.05} \pm \textbf{1.33}$	$\textbf{0.94} \pm \textbf{0.06}$
50	6.43 ± 2.17	0.75 ± 0.05	4.84 ± 0.95	0.74 ± 0.01	$\textbf{1.50} \pm \textbf{0.23}$	$\textbf{0.97} \pm \textbf{0.00}$

framework proposed by authors in [3] on the WordNet-Noun dataset.

Poincaré [3]		aré [3]	Hyper	bolic	Ours	
Dimension	Rank	MAP	Rank	MAP	Rank	MAP
5	4.9 ± 0.00	$\textbf{0.823} \pm \textbf{0.00}$	90.81 ± 8.01	0.20 ± 0.01	$\textbf{4.23} \pm \textbf{2.98}$	0.53 ± 0.13
10	4.02 ± 0.00	0.851±0.00	15.67 ± 4.78	0.53 ± 0.07	$\textbf{1.43} \pm \textbf{0.01}$	$\textbf{0.86} \pm \textbf{0.12}$
20	3.84 ± 0.00	0.855 ± 0.00	8.27 ± 2.59	0.71 ± 0.06	$\textbf{2.05} \pm \textbf{1.33}$	$\textbf{0.94} \pm \textbf{0.06}$
50	3.98 ± 0.00	0.86 ± 0.00	4.84 ± 0.95	0.74 ± 0.01	$\textbf{1.50} \pm \textbf{0.23}$	0.97 ± 0.00

- [1] Bartlomiej et.al Czech. Integral geometry and holography. JHEP, 2015.
- [2] Yoshihiro Nagano et al. A wrapped normal distribution on hyperbolic space for gradient-based learning. In ICML, 2019.
- [3] Maximillian Nickel and Douwe Kiela Poincaré embeddings for learning hierarchical representations. In NeurIPS. 2017.
- [4] Luis A. Santaló and Mark Kac. Integral Geometry and Geometric Probability. Cambridge University Press, 2004.
- [5] L. Vilnis and A McCallum. Word representations via gaussian embedding. In ICLR, 2015.

1. Sampling a vector **v** from the Gaussian distribution $\mathcal{N}(0, \Sigma)$ defined over \mathbb{R}^n . 2. Parallel transporting \mathbf{v} from the tangent space \mathbf{o} to the tangent space of new point \mathbf{u} to obtain \mathbf{j}

$$(\mathbf{v}) = \mathbf{v} + \frac{K\langle y, u \rangle_{\mathcal{L}}}{1 + K\langle o, u \rangle_{\mathcal{L}}} (o+u)$$
(3)

$$\log g(v) - (n-1)\log\left(\frac{\sinh||\mathbf{j}||}{||\mathbf{j}||}\right)$$
(5)

Table 2. We compare our proposed method and the hyperbolic version [2] with the deterministic embeddings

References