Detail-Revealing Deep Low-Dose CT Reconstruction

Xinchen Ye, Yuyao Xu, Rui Xu, Shoji Kido and Noriyuki Tomiyama

Abstract

Low dose CT Reconstruction

- Existing methods & weaknesses:
 2. Iterative reconstruction: Recasts the reconstruction as an iterative optimization process. Objective functions based on naive assumptions.
 3. CNN-based methods: Learn the mapping between low-dose CT image and normal dose CT image with deep networks. Details damage.

Motivation

- No hand-designed filters and not rely on raw data.
- Learn better mapping between low-dose CT and full-dose CT.
- Suppressing the noise effectively and retaining the structures well simultaneously.

Method

Dual-Branch Network Architecture

- Pixel-wise Loss L_P:
 $$L_P = \frac{1}{N} \sum_{t=1}^{N} \left[\sum_{p_t} ||\nabla^2 R(p_t)|| e^{-\gamma S(p_t)} \right]$$
 where N is the total number of training samples, P_t means a given pixel at t-th sample. R and S are the refined CT image and the structure image obtained from reconstruction branch and prior branch, respectively. γ is an empirical parameter.

Experimental

- Holistic Loss L_H: LDCT image I, and produces refined CT image R ('fake sample'), NDCT image I_T.
 $$L_H = \frac{1}{N} \sum_{t=1}^{N} \left[\sum_{p_t} ||R(p_t) - I_T^t|| \right]$$

- Total Loss L:
 $$L = L_P + \alpha_1 L_T + \alpha_2 L_H.$$