Norm Loss: An efficient yet effective
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INTRODUCTION

CNNss can suffer from diverse issues, such as:
e Exploding, vanishing gradients
e Scaling-based weight space symmetry
e Covariant-shift

We propose a weight soft-regularization

\method based on the Oblique manifold.

regularization method for deep neural

networks
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RELATED WORK

Weight regularization Activation normalization

o Weight decay e Batch normalization
e Weight normalization e Group normalization

e Weight orthogonalization o Kalman normalization
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PRELIMINARIES

Given weight vector:

W € R™*P, 3)

p is the dimensionality of each weight vector
of a filter, while n is the number of filters.

The Oblique manifold defines:

ddiag WWT) =T

PROPOSED METHOD, THE NORM LOSS (NL)
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where F,, F},, C;, C, are the filter (or weight vector) width, height, number of input and number
of output channels respectively. The loss is penalizing the weight vector of each neuron if its
Euclidean norm is different from one. The final loss function then becomes:

Liotar = Ltargct + At L (2)
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Effect: Slowly steer the weight vectors to unit norm.

CONNECTION TO WD
Weight decay update rule:
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The Norm Loss can be seen as an extension of
the weight decay where the weight decay fac-
tor and its sign are regulated during training
\by the norm of the weight vector.

CROSS ENTROPY EVOLUTION (CIFAR-10)

=

32 1.0 .

© weight decay

5 0.81 norm loss

o —— smoothed weight decay
§0-5' —— smoothed norm loss
€ 0.4/

()]

("]

8 0.2

(@]

= 0.01

©

= 0 40 80 120 160 200 240 280

Train epoch

IMAGENET (RESNET50)
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