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Motivation

 Can we automatically detect the categories of intimacy by analysing

the activity of certain brain regions?

 Considering the temporal dynamic characteristics of intimacy

relationship on neural mechanism, how to model spatio-temporal

dynamics for intimacy prediction effectively is still a challenge.

 Not all channel contributes to intimacy detection, how to find the most

important channels to infer intimate relationship?

Given the advantages of time-frequency resolution in complex neuronal

activities analysis, this paper utilizes functional near-infrared spectroscopy

(fNIRS) to analyse and infer to intimate relationship.



Contribution

(1) A fNIRS-based database is collected to analyze human’s complex brain response

pattern corresponding to intimacy. Fortytwo-channel fNIRS signals are recorded

from 44 subjects when they watching the pictures from his lover, friend and

stranger;

(2) a fNIRS-based cascade deep learning architecture is utilized to detect three

different intimacy classes, including lover, friend and stranger. Compared with

hand-craft features, the proposed method can automatically extract spatial and

temporal features from fNIRS signals by cascade convolutional recurrent neural

network, which is capable of learning feature representations and modeling the

spatial-temporal dependencies between their activation;

(3) we also investigate the usage of attention-based architectures to improve fNIRS-

based intimacy prediction. The attention mechanism allows the network to focus

on the salient parts of a sequence.



METHODOLOGY

Fig. 1. The framework of attention-enhanced cascade convolutional recurrent neural network based on fNIRS 

signals for intimacy prediction. 

(a) collects intimacy-induced fNIRS signals;

(b) removes fNIRS signal noise; 

(c) captures high-level spatial representation by CNN model; 

(d) captures high-level temporal representation by LSTM model;

(e) finds the salient parts of a sequence for intimacy by attention mechanism; 

(f) learns the final representation for intimate relationship category 

(g) predicts the final intimate relationship category by a softmax classifier 

(h) outputs predicted results.



EXPERIMENTS AND RESULTS

 Data acquisition

1) Participants: In order to effectively analyse and infer to intimacy, forty-four healthy 

subjects were recruited for the experiment,25 males and 19 females with an average 

age of 22.12±2.51 years old and 20.4±2.11 years old. All of subjects are right-

handed, with normal vision or corrected vision, no history of mental illness, and no 

major conflict with lovers during the week before the visit. Before the experiment, the

principle of the instrument was introduced to ensure that it was harmless to the 

human body and does not involve any ethical issues. And the participants were 

asked to sign the experimental informed consent form.

2) Stimuli: We adopt the photos from subject’s lover, friends, and strangers to induce 

his/her brain imaging in different relationships. Each participant was asked to provide 

20 photos (10 for lovers and 10 for friends). Thirty volunteers (15 male, 15 female, 

unrelated to the experiment) provided 60 photos (2 per person) as the induction of 

stranger photos. During the experiment, each subject views the photos from his/her 

lover, friends and strangers by random selection.



EXPERIMENTS AND RESULTS

 Data acquisition

3) Instrumentation & 4) Experimental protocol:

Fig. 2. Experimental paradigm for inducing subject’s fNIRS response with different 

intimate relationships



EXPERIMENTS AND RESULTS

 Network structure of our proposed method

Fig. 4 The network structure and hyper-parameters of our proposed method



EXPERIMENTS AND RESULTS

 Results and Discussion:

 Performance on different methods for fnirs-based intimacy 

prediction with different instance length



EXPERIMENTS AND RESULTS

 Results and Discussion:

 Accuracy and loss curves during the testing for 200 epochs 

under different methods



Conclusions

The proposed cascade model in the paper is motivated by the existing progress

on deep models, and takes advantage of CNN, LSTM, the attention mechanism

achieves intimacy prediction. With the proposed model, we achieved a potent

improvement in the current state-of-the-art for the task of intimacy prediction on the

fNIRS-based dataset. The increase in performance in comparison to other existing

models shows that attention mechanism can improve the performance of cascade

convolutional recurrent neural network for intimacy prediction. An overall analysis of

the performance of our proposed method is provided and compared to other

techniques.

In the future, we will expend our dataset by increasing the number of subjects to

make it publicly available to the research community, and multi-modal fusion method

will also be investigated to further boost the performance of the intimacy prediction

task.
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