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Problem
Most super-resolution (SR) methods focus on
the design of network architecture and adopt a
sub-pixel convolution layer at the end of net-
work, but few have paid attention to explor-
ing potential representation ability of upscaling
layer.

Method
Sub-pixel convolution layer aggregates several
low resolution (LR) feature maps and builds
super-resolution (SR) images in a single step.
However, those LR feature maps share simi-
lar patterns as they are extracted from a sin-
gle trunk network. In this paper, we propose
a progressive splitting and upscaling structure
(PSUS) for SR task. It works with a certain ba-
sic block and aims at generating decoupled SR
features progressively. It uses fewer parameters
and lower computational cost, whose details are
shown in the paper.
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Overview
Flexible Structure We propose a progressive
splitting and upscaling structure (PSUS) for im-
age SR to explore the potential representation
ability of upscaling layer.
Novel Splitting Strategy We propose a pro-
gressive splitting module (PSM) which can pro-
duce decoupled deep features using approxi-
mately the same computational cost.
Efficient Upscale Module We propose a mul-
tipath upscale module (MUM) which aggregates
LR features. Besides, we propose a transition
strategy to further reduce computational cost
and parameters.
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Proposed Architecture
Our proposed PSUS consists of four parts: shallow feature extraction, global feature extraction,
progressive splitting module (PSM) and multipath upscale module (MUM). We use ILR and ISR to
denote input and output of network. One convolutional layer is used to extract the shallow feature
F0 from LR input image. Assuming that corresponding chain-like model stacks B basic blocks, we
use λ (0 < λ < 1) of them to extract global feature. Further, we adopt a PSM to progressively
decouple features and generate FLR1 ,FLR2 · · ·FLRr2

. Then, we have got r2 groups of features which
correspond to each position of r×r patch respectively. What MUM does is to aggregate these features
and generate C SR features. The architecture of PSM and MUM have been shown in the figure.
More details could been found in the paper.
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Experiments
we compare the performance of our method to three widely-used models: a small model EDSR-
baseline from [1], a large model RCAN[2] and an unsupervised SR model ZSSR[3].
We conduct experiments on a small model EDSR-baseline firstly. It is a single-scale model and only
contains 16 ResBlocks. For PSUS with ResBlock, we study the effects of different λ for ×2 model
and then choose proper values of µ1, µ2 for ×4 model. Quantitative metrics are presented. λ denotes
the ratio of basic blocks using for extracting global feature. For ×2 model, its network architecture
is determined by the single hyperparameter λ. We retrain EDSR-baseline model in our environment
for fair comparison and train ×2 PSUS with λ ∈ {0.875, 0.75, 0.5}. PSNR and SSIM are shown in
Table I. As for ×4, results are shown in Table III and Table IV.
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In this section, we compare the performance of our method
to three widely-used models: a small model EDSR-baseline

a large model RCAN [10] and an unsupervised

volutional layer respectively. For testing, we use
validation set [24], Set5 [25], Set14 [26], BSD100

experiments
on bicubic degradation and SR results

TABLE I: Quantitative results (scale ×2) of our PSUS with
different λ and baseline. PSNR(dB) and SSIM are tested on Y
channel without self-ensemble [9]. DIV2Kval denotes DIV2K
validation set. Best results are highlighted.

Baseline
PSNR/SSIM

λ = 0.875

PSNR/SSIM
λ = 0.75

PSNR/SSIM
λ = 0.5

PSNR/SSIM

Set5 37.96/0.9604 37.96/0.9603 37.98/0.9603 37.98/0.9604
Set14 33.51/0.9168 33.48/0.9163 33.52/0.9173 33.53/0.9172

BSD100 32.13/0.8991 32.12/0.8989 32.15/0.8994 32.15/0.8993
Urban100 31.80/0.9255 31.86/0.9261 31.96/0.9268 31.95/0.9269
DIV2Kval 36.04/0.9449 36.06/0.9450 36.10/0.9453 36.11/0.9454
Average 34.29/0.9294 34.30/0.9293 34.34/0.9298 34.34/0.9298

TABLE III: Quantitative metrics of model complexity and
computational cost for different ×4 models.

EDSR-Baseline PSUS with ResBlock

Params 1.518M 1.483M (−2.3%)

FLOPs 257.47G 224.27G (−12.9%)

TABLE IV: PSNR(dB) and SSIM results (scale ×4) of base-
line and our proposed PSUS. Best results are highlighted.

Baseline
(from scratch)
PSNR/SSIM

Baseline (from
pre-trained x2)
PSNR/SSIM

PSUS
with ResBlock
PSNR/SSIM

Set5 32.09/0.8936 32.11/0.8937 32.13/0.8938
Set14 28.53/0.7807 28.56/0.7816 28.50/0.7805

BSD100 27.55/0.7352 27.54/0.7357 27.55/0.7354
Urban100 25.95/0.7817 26.00/0.7839 26.01/0.7839
DIV2Kval 30.38/0.8366 30.40/0.8373 30.42/0.8375

We then conduct experiments on a state-of-the-art model RCAN to see whether our method can
obtain similar improvement on large models. Quantitative metrics and visual comparison will be
presented. As shown in Figure 5, during the first 2× 105 iterations, our method can converge much
faster than baseline. Some visual Results are shown in Figure 7. More results could been found in
the paper.

TABLE II: Quantitative metric of model complexity and
ferent

3

For settings of hyperparameter, we
,

As our PSUS
we retrain two EDSR-

is trained from scratch and the other is

34.5

35

35.5

36

36.5

37

37.5

38

38.5

0 50 100 150 200

Updates (k)

PSNR(dB) on Set5 ( 2)

 RCAN

 PSUS with RG

 Best performance

Fig. 5: PSNR on validation set of ×2 models during first 2×
105 iterations of training.
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Fig. 7: Visual comparison for ×4 SR. Best results are high-
lighted.


