In this paper we present TCE: A method for self-supervised learning from unlabelled video data. Mimicking the

smoothness of the real world, we enforce similarity between nearby frames and dissimilarity between videos to

create a temporally coherent embedding space with a 2D-CNN backbone. We demonstrate the downstream

benefits of our approach by achieving state-of-the-art results across multiple action recognition datasets, with a
top-1 accuracy of 71.2% on UCF101 and 36.6% on HMDB51.

Motivation

* A major bottleneck for the performance of ML models is a lack of labelled

data for training

* We believe that in the same way that the real world is temporally

smooth, a strong pre-trained embedding should also demonstrate
smooth behaviour over time
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Figure 1: TCE uses a contrastive loss to enforce similarity between nearby frames, while encouraging
dissimilarity to frames from other videos

We use a contrastive loss function to enforce similarity between nearby
frames, and dissimilarity between frames from different video sequences

In addition, we implement a hard negative mining approach to find
increasingly difficult negative examples as training progresses

As training progresses, the network will select potential negatives that
exist closer and closer to the positive examples in the embedding space

Figure 2: As our training progresses, we allow the network to train using hard negatives closer and
closer to the contrastive anchor
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Results
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Figure 3: TCE produces an increasingly smooth embedding space as training progresses

Method Backbone Params 2D-CNN  Pre-Training UCFI101(%) HMDB51(%)
3DRotNet [34] 3D ResNet-18 34 x 10° X Kinetics400 62.9 33.7
3DCubicPuzzles [10] 3D ResNet-18 34 x 10° X Kinetics400 65.8 33.7
DPC [5] 3D ResNet-187 14 x 10° X Kinetics400 68.2 34.5
TCE (Ours) 2D ResNet-18 11 x 10° v Kinetics400 68.87" 34.2
TCE (Ours) 2D ResNet-50 23 x 109 v Kinetics400 71.2 36.6
DPC [5] 3D ResNet-34T 33 x 109 X Kinetics400 75.7 35.7
Motion & Appearance [35] C3D 11 x 10° X UCF101 48.6 2013
Shuffle and Learn [12] AlexNet 61 x 109 v UCF101 509" 19.8
VideoGAN [4] C3D 11 x 109 X UCF101 52.1 -
Arrow of time [36] AlexNet 61 x 106 v UCF101 .3 -
CMC [17] CaffeNet x2* 58 x 10 x 2 v UCF101 55.3 -
OPN [11] VGG-M-2048 8.6 x 106 v UCF101 59.8 23.8
DPC [5] 3D ResNet-187 14 x 109 X UCFI101 60.6™ -
Skip-Clip [¥] 3D ResNet-18 34 x 10° X UCF101 64.4T -
Video Clip Ordering [!3] R3D 14 x 10 X UCF101 64.9" 29.5
TCE (Ours) 2D ResNet-18 11 x 10° v UCF101 68.2" 317
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Table 1: Comparison between TCE and other state-of-the-art approaches

Ablation: Hard Negative Mining
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Figure 5: UCF101 Top-1 Accuracy for TCE. Results reported on the first split of UCF101 using a
ResNet18 backbone.

Conclusion

We propose TCE, a self-supervised approach to learning from unlabelled
video data, exploiting the inherent smoothness of the real world

* We achieve state-of-the-art results for HMDB51, and for UCF101
approaches pre-trained on UCF101

* TCE achieves results on-par or superior to current action recognition
state-of-the-art

e \We demonstrate strong spatio-temporal features can be learnt by 2D
CNNs, given appropriate formulation of the pre-training loss

* Hard negative mining approach ameliorates vanishing gradient issue
selecting negatives on large unlabelled datasets

See original paper for references corresponding to Table 1



