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Autonomous driving Speech Recognition Personal Assistants
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Pruning

 Remove redundant neurons and synapses while
maintaining accuracy

Dense Network Pruned Network
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Contributions

* |n-training pruning method

* Novel metric - Activation Density/Energy
(AD/AE)

* OPS reduction on benchmark datasets

« Compute cost of networks during both training
and inference.
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Activation Energy

« Key Observation: Number of non-zero activations
decreases as training progresses

 Activation Energy: The density of non-zero activations
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Total Activation Energy (AE)

CIFAR-10 — VGG-19 — Activation Energy vs. Epoch
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Algorithm

Periodically monitor the
AEs of the layers during
the training process and
prune the layers based
on the density at regular
training intervals

Set pruning criteria to be
equivalent to the
saturation point.

Stopping criteria based
on the overall shape of
AE vs. epoch curve for
each network
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Algorithm 1: Activation Density driven Pruning in
Training

1 Input: Training dataset and randomly initialized
network netinitial

2 Output: Trained and pruned network net fiyqi

3 net[0] = netinitial

4 //Note, net[0] can be a large network like {VGG—] 9,
ResNet18};

5 epoch = 0;

6 index = 0;

7 while not stopping (§) criteria do

8 net = Randomly Initialized (net[index));
9 while not pruning (p) criteria do

10 train(net, epoch);

11 for L in net.Layers do

12 #nonzero[L] =

count_nonzero_activations(L);

3 AE[L] = #nonzero[L] :

#total[L]
14 end
15 epoch + +;
16 //Note, we train the network netlindex] while

monitoring the layer-wise AE till p is satisfied.
17 end

18 | index + +;

19 for L in net.Layers do

20 net[index].LayerSize[L] = AE[L]
xnetindex — 1].LayerSize[L];

21 end

22 | //Note, we prune the network net[index — 1] to get
the compressed network net[index| based on AE
per layer. The pruning continues till § is satisfied.

23 end
24 net final = netfindez];




AE Trend

CIFAR10 — VGG19 — Activation density per layer vs. epoch
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Results

« Onanaverage 38% of channels are pruned in the first 8 layers layer 1-8 and 25% channels in the latter
8 layers layer 9-16 for VGG19 on CIFAR10.
+  Shows effectiveness of the AE driven pruning for structured layer-wise network compression focused on
overall OPS reduction.

Network Configuration Accuracy | Parameters OPS Training
reduction reduction Epochs p
CIFAR-10, ResNet18
net 0 [ 64, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512 ] 97 % 1% Ix 100 epochs
net | [ 34, 29, 41, 25, 33, 58, 78, 27, 65, 71, 83, 46, 69, 120, 191, 219, 288 ] 97 % 7.3% 6.0x 70 epochs
net 2 [ 21, 16, 30, 10, 22, 24, 47, 9, 39, 26, 48, 12, 39, 41, 85, 63, 188 ] 95 % 41.2x 23.2x 70 epochs
net 3 [ 14,9, 21, 5, 15, 13, 32, 5, 26, 13, 34, 5, 25, 21, 45, 12, 142 ] 91 % 199.3 x 67.1x N/A
CIFAR-10, VGG-19
net 0 [ 64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512 ] 97 % 1 x 1x 100 epochs
net 1 [ 18, 23, 47, 25, 54, 51, 62, 61, 197, 258, 378, 322, 402, 383, 259, 134 ] 94 % 3.1x 5.6 70 epochs
net 2 [ 10,9, 30, 11, 21, 31, 22, 21, 62, 70, 113, 141, 256, 299, 194, 71 ] 93 % 10.3x 27.4% N/A
CIFAR-100, ResNet18
net 0 [ 64, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512 ] 81.0 % 1 x 1x 25 epochs
net 1 [ 39, 31, 49, 24, 44, 54, 90, 36, 84, 88, 155, 65, 136, 130, 231, 105, 300 ] 79.0 % 7.6 % S.1x N/A
CIFAR-100, VGG-19
net 0 [ 64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512 ] 76.0 % 1 x 1% 25 epochs
net 1 [ 34, 23, 51, 30, 63, 63, 73, 82, 210, 285, 333, 357, 317, 259, 181, 106 ] 73.0 % 3.9x 5.3x% N/A
TinyImageNet, ResNet18
net 0 [ 64, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512,512 ] | 51.54 % 1 x 1% 25 epochs
net 1 [ 31, 21, 47, 27, 48, 62, 99, 58, 94, 85, 161, 69, 133, 93, 152, 56, 247 ] 50.51 % 10.6 x 4.7x N/A
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Accuracy vs OPS Reduction Trade-off

« Adecreasing AE implies we still have some redundancies in the
network that can facilitate pruning without significant loss in
accuracy

« Find a trade-off point when the AE curve starts increasing

Accuracy vs OPS reduction trade-off: CIFAR10, ResNet-18
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Training Complexity

« Captures the amount of time and training
energy required to achieve a given model
accuracy, compression and efficiency.

Z(OPS reduction,,.;,) " x (# training epochs,,; )

net;
Network ResNet18 VGG-19
CIFAR-10 CIFAR-100 Tiny ImNet CIFAR-10 CIFAR-100
net O 210.0 (1x) 210.0 (1x) 60.0 (1x) 210.0 (1x) 210.0 (1x)
net 1 135.0 (0.64%x) | 66.2 (0.32x) | 37.7 (0.62x%) 120.2 (0.57x) | 64.6 (0.31x%)
net 2 120.8 (0.58 %) - - - -
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Activation Visualization

Visualization of increasing activation density using a colormap (more color implying more
neuronal activation)

Although certain layers break the pattern, overall trend of higher AE in the layers of
net2 than in the layers of net0

CIFAR-10 — VGG-19 — Activation visualization
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e VGG19 on CIFAR100

Comparison with Previous Work

Authors Training Accuracy | Parameters OPS
complexity reduction reduction

Garg et al. [35] 206.6 71 % 9.1x% 3.9%

Liu et al. [13] 260.0 73 % 8.7% 1.6 X

Ours 64.6 73 % 3.9% 5.3X%

« Comparison with Lottery Ticket Hypothesis

Model Authors Training Accuracy | Parameters OPS
memory complexity reduction reduction

ResNet18 | LTH [8] 206.45 93 % 5.6 N/A

Ours 120.8 95 % 41.2% 23.2%

VGG-19 LTH [8] 105.1 93 % 35.7% N/A

Ours 129.4 93 % 10.3% 27.4%
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Conclusion

« We propose an ‘Activation Density’ metric, a
heuristic that provides a structured and interpretable
way of optimizing the network architecture.

* We present a novel pruning in training method that
yields significant compression benefits on state-of-
the-art deep learning architectures.

« The progressive downsizing of a network during the
training process yields training complexity benefits.

* We get considerable benefits in training complexity
and compute-OPS-reduction over the baseline
unpruned model, as well as over previously
proposed pruning methods.
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