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Body From Multi-scale Features and Multi-
view Images
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Introduction

Capturing and reconstructing detailed 3D human body models from
monocular images is a quite challenging task in computer vision. We
propose a multi-scale features based method to learn an implicit
function for 3D human body reconstruction from multi-view images In
this paper. Our method has two main contributions:

* |tis a model-free implicit function based method.
 The novel multi-scale features.
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Fig. 1. The overview of our method. Multi-view images are fed into our model. Fi is the feature grids extracted by
the hourglass network shown as the orange "» «”. For the point in the images (yellow "+"), the corresponding
features can be extracted from multi-scale features. The features are passed to a classifier to decide the value of
the implicit function representation. After training the model, we can reconstruct the 3D mesh from the implicit
function.
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Fig. 2. The example of projection from 3D points to multi-view images, the multi-scale features extraction and
guery the multi-scale features PIFu 1.0330 0.0212 0.7571
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The loss function for learning the implicit function to represent the 3D
human body model is defined as:
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Fig. 4. The qualitative results of previous methods and our method on the CAPE dataset
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where x;; is the 2D projection on the j-th image for point X;. o(X;) is the
ground truth of occupancy value for X;. L(-) is the standard mean
square error loss between f(F(f)(x,-j)) and o(X;). Through minimizing
L¢, the multi-stage hourglass networks and the classifier fully
connected network are trained.
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