Unsupervised Detection of Pulmonary Opacities for Computer-Aided Diagnosis of COVID-19 on CT Images

RITSUME

Rui Xu¹, Xiao Cao¹, Yufeng Wang¹, Yen-Wei Chen², Xinchen Ye¹, Lin Lin¹, Wenchao Zhu³, Chao Chen³, Fangyi Xu³, Yong Zhou³, Hongjie Hu³, Shoji Kido⁴ and Noriyuki Tomiyama⁴

¹Dalian University of Technology ²Ritsumeikan University ³Zhejiang University School of Medicine ⁴Osaka University

Background

Diagnosis of COVID-19 on CT Images

Figure 1: Existing deep learning based methods for COVID-19 diagnosis

- Existing methods tend to extract features from the entire CT images which limits their performances.
- Opacity-awared methods improve the capacity of COVID-19 diagnosis but require human annotation of pulmonary regions on CT images which costs too much time and human labors.

Figure 2: The procedure of anomaly detection

• Anomaly detection aims at identifying abnormal cases by training only on normal data which is suitable for locating regions of pulmonary opacities on CT images

Method

Figure 3: An overview of the proposed method.

- 1. The input CT slices are fed into lung segmentation model and opacity detector respectively.
- 2. The differences between the reconstructed images and original images are computed and multiplied by segmentation results.
- 3. After thresholding, binary masks generated from difference maps incorporate with original images are utilized for feature extraction and classification to get the final results.

Method

Opacity Detector

Figure 4: The architecture of the proposed opacity detection model.

• Inference.

- 1. Get the difference map by computing reconstruction error.
- 2. After normalization, thresholding and multiplied by segmentation map, a binary mask of opacity in lung region can be obtained.

Experimental

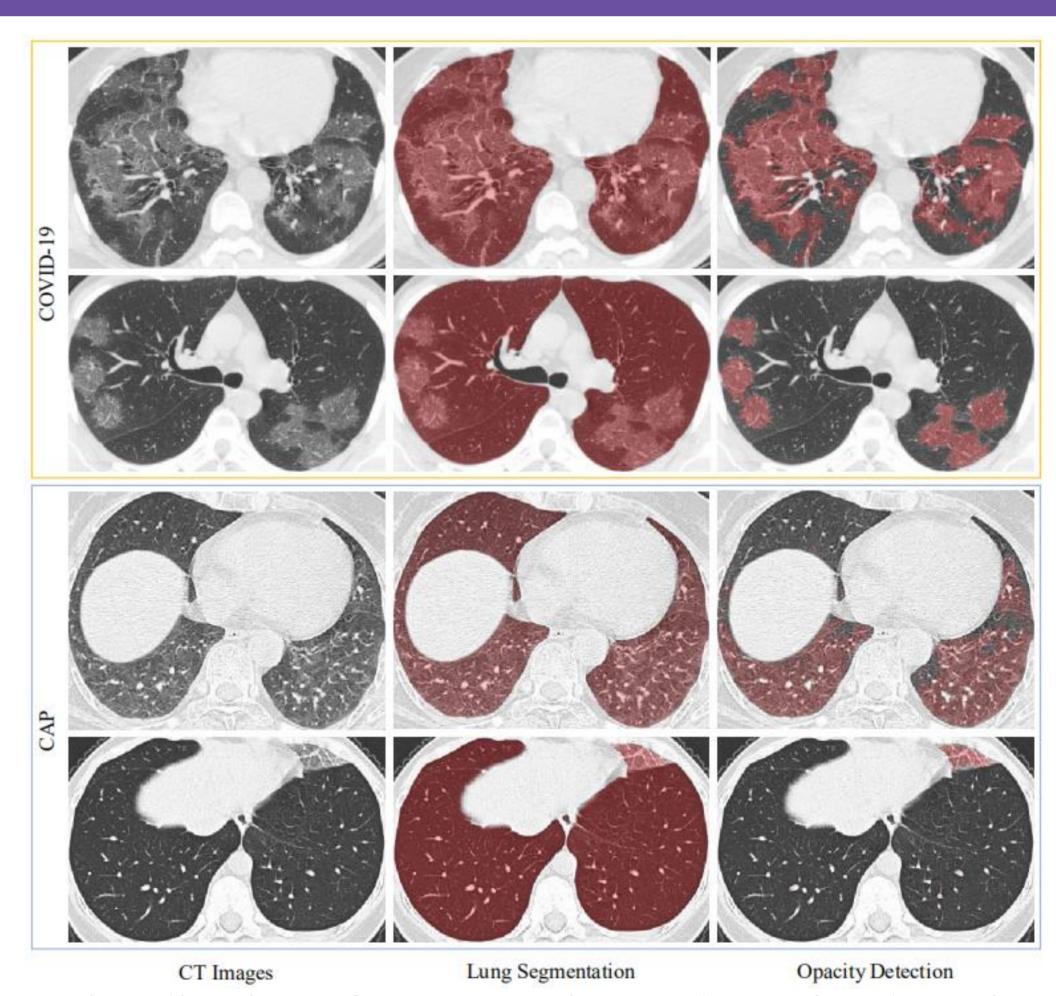


Figure 5: Visualization of segmentation and opacity detection results on COVID-19 and CAP cases.

Methods	Feature Extraction		Evaluation				
	Lung	Opacity	Accuracy	Precision	Recall	F1-score	AUC
Linear SVM	✓		0.9350	0.9674	0.9000	0.9302	0.9565
		✓	0.9400	0.9905	0.8900	0.9338	0.9585
RBF SVM	✓		0.9350	0.9674	0.9000	0.9302	0.9565
		✓	0.9550	1.0000	0.9100	0.9510	0.9590
Random Forest	✓		0.9400	0.9889	0.8900	0.9342	0.9640
		✓	0.9450	0.9895	0.9000	0.9402	0.9720
AdaBoost	✓		0.9200	0.9285	0.9100	0.9178	0.9620
		✓	0.9400	0.9714	0.9100	0.9372	0.9640
XGBoost	✓		0.9200	0.9443	0.8900	0.9155	0.9560
		✓	0.9450	0.9800	0.9100	0.9416	0.9600

Table 1: Quantitative results of classification.

Conclusion

We propose an opacity detection model for diagnosis of COVID-19. By applying opacity detection, the opacity regions can be segmented in an unsupervised manner which is a key to overcome the bottleneck of insufficient labeled data.