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Introduction
• Distributed Gaussian process (GP) is a prominent method to scale Gaussian Processes (GPs) to big data based on the divide-and-conquer approach,

they train local experts by dividing the training set into subsets, thus reducing the time complexity.
• This strategy is based on the conditional independence assumption (CI), which basically means that there is a perfect diversity between the local

experts.
• The CI assumption is often violated in practice and the aggregation of experts leads to sub-optimal and inconsistent solutions. The proposed models

to cope with the consistency problem suffer from high computational costs and poor predictions, in particular when the data set is randomly divided
into subsets.

• The key contribution of our work lies in considering the dependency between Gaussian experts and improve the prediction quality in an efficient
way. First, we develop an approach to detect the conditional correlation between experts, and then we modify the aggregation using this knowledge.

Problem Set-up
Consider the regression problem y = f(x) + ε,
where the objective is to learn the latent
function f from a training set D = {X, y}ni=1.

Distributed GP involves dividing the D into
M partitions D1, . . . ,DM , and training the
standard GP at each partition with predictive
distribution pi(y

∗|Di, x∗) ∼ N (µ∗i ,Σ
∗
i ) for test

point x∗.

The predictive distribution is given as the prod-
uct of multiple densities. For independent ex-
perts the predictive distribution is

p(y∗|D, x∗) ∝
M∏
i=1

pβi

i (y∗|Di, x∗). (1)

Methodology
LetM = {M1, . . . ,MM} be Gaussian experts.
The experts’ predictions matrix µ∗M is used in
order to detect strong dependencies between
experts. This step results clusters of correlated
experts, C = {C1, . . . , CP }, P �M .

Aggregating the experts at each cluster leads to
a new layer of experts, K = {K1, . . . ,KP }, which
are conditionally independent given y∗. The fi-
nal prediction is done by using the K instead of
M.
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Dependency Detection: If the joint distri-
bution of Gaussian experts is multivariate nor-
mal, then the Gaussian graphical model is used
to find the precision matrix Ω:

p(µ∗M|Ω) ∝ exp

{
−1

2
(µ∗M)T Ω µ∗M

}
, (2)

where Ω encodes the conditional dependency
and is calculated using the GLasso method:

Ω̂ = arg max
Ω

log |Ω| − trace(SΩ)− λ ‖Ω‖1 , (3)

where S = cov(µ∗M), λ is the penalty term, and
‖.‖1 is the L1-norm.

To find the new layer K, we apply Spectral Clus-
tering which makes use of the relevant eigenvec-
tors of the Laplacian matrix of Ω.

Aggregation

Algorithm 1 Aggregating Dependent Local Gaussian Experts
Require: µ∗M , λ, P
1: Calculate sample covariance S of experts’ predictions
2: Estimate Ω̂ using GLasso
3: Estimate H by performing spectral clustering SC (Ω̂, P)
4: Obtain new experts {K1, . . . ,KP } using GRBCM
5: Aggregate new experts using GPoE or GRBCM
6: return The estimated mean and variance of p(y∗|D, x∗,K), i.e. µ∗K and Σ∗K

Sensitivity Analysis (Synthetic Example)
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Conclusion
We proposed DGEA, a novel DGP approach that leverages the dependencies between experts and
improves the prediction quality. The DGEA

• uses an undirected graphical model to detect strong dependencies between experts

• defines clusters of interdependent experts

• provides consistent results when n→∞.
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