A New Convex Loss Function For Multiple Instance Support Vector Machines

I INTRODUCTION

- □ Multiple Instance Learning (MIL)
- Weakly Supervised Learning
- Training instances are arranged in sets, called bags
- Labels are provided for entire bags, not for instances

Task: Find a bag classifier to predict the labels of unseen bags

□ Applications of MIL

- Drug Activity Prediction Problem: the first MIL Model
- Computer Aided Diagnosis (from images)
- Anomaly Detection in Videos
- Video Classification

SVM Formulations od MIL

• mi-SVM/MI-SVM, ∝SVM, RMI-SVM

UWR-SVM

• A New SVM based on the Witness Rate(WR) of a positive bag

 Maximizing the minimum WR among positive bags
 Estimation of WR of a positive bag using tanh(·) for unknown labels

□ Contributions of WR-SVM

• Proposing a new convex loss function for MIL

· Providing a very simple NN framework for MIL

II MATHEMATICAL MODELS

□ Binary MIL Model: Training dataset: $\{(X_i, Y_i)\}_{i=1}^N$

• $X_i = \{x_1^i, x_2^i, \dots, x_{M_i}^i\}$: bag i

• $x_i^i \in \mathbb{R}^d$: instances of bag *i*

- $Y_i \in \mathcal{Y} = \{-1,1\}$ is the known label of the bag X_i .
- The label y_j^i of an instance x_j^i is unknown, $y_j^i \in \{-1,1\}$

□ Standard MIL Assumptions

• If $Y_i = 1$, then $y_j^i = 1$ for at least one $j \in \{1, \dots, M_i\}$. • If $Y_i = -1$, then $y_j^i = -1$ for all $j \in \{1, \dots, M_i\}$.

UWR-SVM

- The Witness Rate (WR) $\rho_i\,$ of the $\,i\text{-th}$ positive bag is defined by

$$\rho_i = \frac{1}{M_i} \sum_{j=1}^{M_i} \mathbb{1}_{\left\{y_j^i = 1\right\}}$$

• WR-SVM maximizes $\min_{i:Y_i=1} \{\rho_i\}$:

$$\begin{split} \min_{\substack{y_{j}^{i}, w, b, \xi_{j}^{i} \\ j \in \{-1, 1\}, \ \forall j, i: Y_{i} = 1 \ \\ y_{j}^{i} \in \{-1, 1\}, \ \forall j, i: Y_{i} = 1 \ \\ \end{split}} \frac{\lambda}{2} \|w\|^{2} + \frac{1}{N} \sum_{i: Y_{i} = -1}^{X_{i}^{i}} \xi_{j}^{i} + \frac{1}{N} \frac{1}{\min_{i: Y_{i} = 1}^{X_{i}} \{\rho_{i}\}}{\sum_{i: Y_{i} = 1}^{Y_{i}^{i}} \xi_{j}^{i} + \frac{1}{N} \sum_{i: Y_{i} = 1}^{X_{i}} \{\rho_{i}\}} \\ \end{bmatrix}$$

 $\xi_i^i \geq 0, \ \forall i: Y_i = -1$

□ Relax the integer variable y_j^i to be a real variable • Approximate the label y_j^i of an instance x_j^i in positive bags with a real variable $z_j^i = \tanh(w^T x_j^i + b) \in (-1,1)$ • Using this relaxation, WR can be approximated as:

$$\hat{\rho}_i = \frac{1}{M_i} \sum_{j=1}^{M_i} \mathbb{1}_{\left\{z_j^i \ge z_0\right\}} z_j^i$$

• Loss function L of WR-SVM:

$$\begin{split} L &= \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{i:Y_i = -1} \sum_{j=1}^{M_i} \left(1 + w^T x_j^i + b \right)_+ \\ &+ \frac{1}{N} \sum_{i:Y_i = 1} (\epsilon - \hat{\rho}_i)_+ \end{split}$$

III EXPERIMENTS

DNN architecture of WR-SVM

- The loss function L is convex.
- MIL pooling function for WR-SVM is $\hat{\rho}_i > 0$.
- Deep WR-SVM need not the MIL Pooling Layer
- The first Deep MIL without MIL Pooling Layer

Video Datasets (30 classes)

• WIDER bags: sampled WIDER images from 30 classes (class 0class 29) to make artificial video bags

- CCV + WIDER bags
- HMDB51
- UCF-101

Performance of WR-SVM

Classifier	Accuracy(%)			
	WIDER	CCV+	HMDB51	UCF-101
mi-SVM	25.42	23.24	21.33	19.41
MI-SVM	27.73	28.45	25.46	23.72
alter ∝SVM	35.33	31.35	29.37	33.30
Single-granular \propto SVM	37.45	34.85	31.65	28.75
RMI-SVM	37.10	38.15	35.78	34.26
Ensemble of CNNs	68.32	58.42	64.75	66.37
AWR-SVM	71.65	69.53	68.71	65.66

IV CONCLUSIONS

Contributions of Our Works

We introduce a new convex formulation, WR-SVM, of the MIL problem based on the WRs of positive bags.
Our NN framework of WR-SVM is one of the simplest NN models for MIL.

□ Further Research

• Test WR-SVM for larger classes and develop efficient bag generators

 \bullet Optimal DNN architectures (i.e., depths and widths) for WR-SVM

