ICPR::

25th INTERNATIONAL CONFERENCE
ON PATTERN RECOGNITION
Milan, Italy 10 | 15 January 2021

Malware Detection by Exploiting Deep Learning

N US

of Singapore

over Binary Programs

Panpan Qi*, Zhaogi Zhang*, Wei Wang* and Chang Yaof

*School of Computing, National University of Singapore, Singapore
fInstitute of Computing Innovation, Zhejiang University, China

Introduction

National University

4 . . N\ 4 . . \
Motivation Contribution
» Malware (malicious software) remains the most popular and damaging attack vector, » Proposed an end-to-end malware detection framework based on deep learning
costing hundreds of billions in damage. techniques, which achieves the best performance among existing deep learning based
» Malware evolves rapidly, with reports showing that 99% disappear after 58 seconds. methods.
» Traditional machine learning models heavily depend on feature engineering and could » Proposed an effective loss function for optimizing recall with a fixed tiny false positive
be easily deceived by hackers. rate.
> Arlni-vifruls industry prefer to in(l:lrelase ﬂ;]e recall! (i-e., true positive rate) while maintaining » Conducted experiments on a real large dataset to confirm the effectiveness of the
alow false positive rate (usually less than 0.1%). proposed feature learning framework and loss function for malware detection.
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Data Summary ROC Curves Comparison
» SecureAge deployed 12 commercial antivirus engines that are continuously "o 10
scanning data from the endpoints.
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(c) ROC curves of EntropyNet (d) ROC curves of Proposed Model
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