
Motivation

►Malware (malicious software) remains the most popular and damaging attack vector,

costing hundreds of billions in damage.

►Malware evolves rapidly, with reports showing that 99% disappear after 58 seconds.

►Traditional machine learning models heavily depend on feature engineering and could

be easily deceived by hackers.

►Anti-virus industry prefer to increase the recall (i.e., true positive rate) while maintaining

a low false positive rate (usually less than 0.1%).

                   

       

                    

      

        

     

  

                  

 

 

 

     

               

            

           

                    

           

            

      

              

                                                    

         

               

         
           

                   

                

     

     

              
       

        

              

               

                                     

          

     

        

Contribution

►Proposed an end-to-end malware detection framework based on deep learning

techniques, which achieves the best performance among existing deep learning based

methods.

►Proposed an effective loss function for optimizing recall with a fixed tiny false positive

rate.

►Conducted experiments on a real large dataset to confirm the effectiveness of the

proposed feature learning framework and loss function for malware detection.
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Model Architecture

►Feature Learning

■ Two separate structures for

processing PE header and

PE sections

►Classification

■ Neural Decision Trees and

logistic regression

■ A special loss function for

optimizing the recall given a

fixed false positive rate

►Gated Convolution layer

■ 𝑿𝑨⨂𝝈 𝑿𝑩

■ Provides a mechanism to

learn, select and pass

along the important and

relevant information

►Global Max-pooling layer

■ Produces the header

feature regardless of the

location of the detected

features

Section Compression
► Input

■ Executable sections in PE sample

►Encoder

■ Conv + Max pooling layer

►Decoder

■ Conv + Up sampling layer

►Loss function

■ Mean square error

Neural Decision Trees

►A differentiable version of decision tree,

enabling end-to-end training and reducing

overfitting.

►Two ensemble techniques are designed

for Neural Decision Trees:

■ Neural Random Forest

■ Neural Gradient Boosting Decision Tree

Loss Function Optimization

►To maximize recall rate with the restriction that false positive rate ≤ 0.1%.

Data Summary

►SecureAge deployed 12 commercial antivirus engines that are continuously

scanning data from the endpoints.

■ Positive: num of engines >= 4

■ Negative: num of engines = 0

Header Feature Extraction

► Input

■ Raw byte sequence of the PE header

►Embedding layer

■ Embeds the raw bytes into a continuous and distributed representation

► Logistic regression is applied on all

the outputs of the decision trees,

providing a more flexible way of

utilizing the generated trees.
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(a) ROC curves of MalConv (b) ROC curves of ConvNet

(c) ROC curves of EntropyNet (d) ROC curves of Proposed Model

ROC Curves Comparison

                                       

                   

                

               

             

                                 
                                                           

                                  

             

                                                

                                               

                                                  

                                                      

          

                                                

                                               

                                                  

                                                      

        

                                               

                                               

                                                  

                                                      


