Multi-level Deep Learning Vehicle Re-identification using Ranked-based Loss Functions

Training phase

Max-pooling

Fully Connected

L2 Normalization

Problem Definition

ResNet50

ID Loss

Eleni Kamenou¹ | Jesus Martinez del Rincon¹ | Paul Miller¹ | Patricia Devlin-Hill²

¹Centre for Secure Information Technologies (CSIT) Queen's University Belfast, United Kingdom ²Thales UK, Belfast, Northern Ireland

THALES

Vehicle Re-Identification (ReID) ReID as a retrieval task

Identifying a vehicle as it transits across different cameras with nonoverlapping fields of view.

Given a guery image of a

vehicle, numerous gallery images are searched to find the same vehicle captured by other cameras.

Proposed Approach

Testing phase

1 2a

	Continuation	
	Current Works	Our approach
Input	detect vehicle parts	raw vehicle images
Output	re-ranking	no post-processing
Data Format	partially video-based	fully video-based
Extra Annotation	vehicle type video timestamps	no extra annotation

ResNet50

Contribution **Experimental Results**

Evaluation on 2 datasets

VeRi-776 (200 vehicles) CityFlow-ReID (333 vehicles) **ReID Evaluation Metrics**

mean Average Precision (mAP) Rank-k scores (R-1, R-5)

	VeRi-776									CityFlow-ReID						
	Image to Image			Image to Tracklet		Tracklet to Tracklet		Image to Image			Image to Tracklet					
	mAP	R-1	R-5	mAP	R-1	R-5	mAP	R-1	R-5	mAP	R-1	R-5	mAP	R-1	R-5	
Baseline(Triplet)	49.52	80.87	92.25	58.02	80.51	81.94	67.60	87.72	88.08	18.48	40.19	58.29	33.42	44.39	44.39	
SSL	54.60	78.24	91.06	62.13	80.51	81.10	68.00	85.69	86.17	19.51	42.67	61.90	33.27	41.14	41.14	
RLL	56.64	79.43	91.17	63.37	78.96	79.55	69.24	87.00	87.42	21.85	40.19	59.43	34.18	44.57	44.76	
Multi-Level RLL	62.48	88.64	94.75	68.25	87.90	88.31	73.34	91.06	91.41	24.59	47.07	62.36	36.44	46.48	46.48	

Single-level Embeddings

Softmax

Ranked-List Loss Function Aims to keep the Euclidean distance (d) between the query and a group of positive samples below a certain threshold $(\alpha-m)$, while separating the query from the negative samples by a margin (α) .

$$l_p(x_c^i, x_c^j) = \max(d_{ij} - (a - m), 0)$$

$$l_n(x_c^i, x_k^j) = \max(a - d_{ij}, 0), c \neq k$$

$$L_p(x_c^i) = \frac{1}{|P_{c,i}|} \sum_{x_c^j \in P_{c,i}} l_p(x_c^i, x_c^j)$$

$$L_{SSL} = t_p(x_c, x_c^i) + t_n(x_c, x_k^i)$$

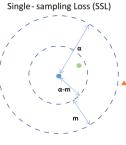
$$L_{RLL}(x_c) = L_p(x_c) + L_n(x_c^i)$$

$$L_{RLL}(x_c) = L_p(x_c) + L_n(x_c^i)$$

$$L_{RLL}(x_c) = L_p(x_c) + L_n(x_c^i)$$

$$L_{RLL}(x_c) = L_p(x_c^i) + L_n(x_c^i)$$

$$L_{RLL}(x_c^i) = L_p(x_c^i) + L_n(x_c^i)$$



RLL



$$L_{final} = w_1 * L_{SSL} + w_2 * L_{SSL}$$



Feature Aggregation

Temporal Pooling

$$L_{RLL}(x_c^i) = L_p(x_c^i) + L_n(x_c^i)$$

Video feature representation: the mean over the

and video-to-video

Temporal Pooling

feature vectors of all the individual frames in the video.

Similarity measuring: image-to-image, image-to-video

$$L_{final} = w_1 * L_{RLL} + w_2 * L_{ID}$$

positive samples whose distance from the query is larger than α -m N: the set of negative samples whose distance from the query is smaller than α positive sample of class #1 anchor sample of class #1

P: the set of

negative sample of class #2 negative sample of class #3

c. k: vehicle identity classes

w₁ w₂: weighting factors

Multi-level Embeddings

+ 6% mAP

Conclusions

A robust end-to-end vehicle ReID framework, which is able to effectively identify vehicles from both image and video data.

١	 Combination of features from different
١	levels of the network allows stronger feature
١	representations to be obtained.

Multi-Level Embeddings + 9% Rank-1 **Temporal Pooling** + 12% mAP

Temporal pooling provides robust video feature representations and extends our system to a fully video-based approach for vehicle ReID.

Multi-Level embeddings

Extracting features from 3 different layers of ResNet50. At training phase: Applying the loss function to each feature vector separately

At testing phase: Feature aggregation

Contact: Eleni Kamenou, PhD candidate, CSIT | e-mail: ekamenou01@qub.ac.uk