

Stochastic Label Refinery: Toward Better Target Label Distribution

Xi Fang, Jiancheng Yang, Bingbing Ni Shanghai Jiao Tong University

25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION Milan, Italy 10 | 15 January 2021

Introduction

Background

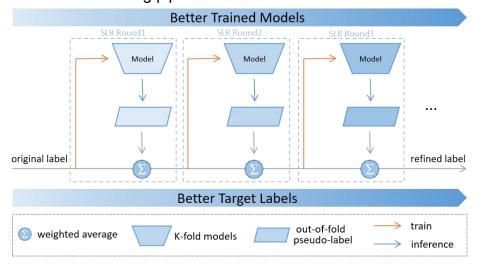
- Most studies concentrate on data augmentation, model structure or loss function to improve the model ability in deep supervised learning, rather than target label distribution;
- Soft label may better than hard label: one-hot or other form of hard label leads to over-confidence; Label smoothing and Mixup show the excellent performance of soft label;
- Better labels can reduce the impact of noise label or long-tail data which are common in practical application;
- Problem How to get even better target label distributions?

Contribution

- We point out the shortcomings of hard label distribution: (a) the risk of over-confidence, (b) easily affected by noise annotation and (c) lost intra-class and inter-class association;
- We propose a new regularized strategy of generating soft target label distribution: Stochastic Label Refinery (SLR);

Methodology

Overall training pipeline of SLR



Details of each SLR round

- 1. randomly k-fold split the data to train k models;
- 2. inference them in k-fold validation data respectively to get out-of-fold(oof) pseudo-label; (E step)
- 3. use oof pseudo-label to refine the target label distribution by weighted average; (M step)
- 4. repeat from 1.

Results

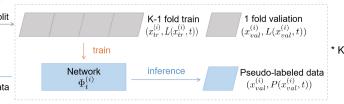
SOTA in DeepDR Diabetic Retinopathy Dataset

Method	Quadratic Weighted Kappa		
Baseline (w/o tricks)	0.8036 ± 0.0214		
Baseline (w/ tricks)	0.8247 ± 0.0125		
SWA [34]	0.8119 ± 0.0234		
OHEM [20]	0.8061 ± 0.0174		
Knowledge Distillation [27]	0.8128 ± 0.0100		
Label Refinery [16]	0.7527 ± 0.0152		
Stochastic Label Refinery	0.8348 ± 0.0053		

Method	Public Test	Private Test	0.84	
Ours	0.9303	0.9215	0.82	
Team1	0.9262	0.9211	o.so -	
Team2	0.9232	0.9097	岩 0.78 -	
Team3	0.9202	0.8946	0.76 - SIR	`
Team4	0.9088	0.8890	Label R	lefinery

Performance on Plant Pathology Dataset

Method	Top-1 Accuracy	Average AUC
Baseline	0.9676±0.0056	0.974±0.000
Focal Loss [8]	0.9665 ± 0.0064	0.968 ± 0.000
OHEM [20]	0.9670 ± 0.0071	0.974 ± 0.000
Label Smoothing [12]	0.9736 ± 0.0106	0.974 ± 0.000
Knowledge Distillation [27]	0.9731 ± 0.0090	0.973 ± 0.000
Label Refinery [16]	0.9720 ± 0.0079	0.961 ± 0.000
Stochastic Label Refinery	0.9747 ± 0.0083	0.976 ± 0.000



Categories		Sky	Cloud	Sea	Plant	Others
Hard Label	one-hot	1	0	0	0	0
	multi-hot	1	1	0	1	0
Soft Label	label smoothing	0.9	0.025	0.025	0.025	0.025
	ideal distribution	0.45	0.1	0.05	0.35	0.05

M Step: Training Data Pseudo-labeld data (x, L(x, t)) (x, P(x, t))

[Weighted Average]

Training Data (x, L(x, t+1))