KERNEL-BASED LIME WITH FEATURE DEPENDENCY SAMPLING

Sheng Shi, Yangzhou Du, Wei Fan AI Laboratory, Lenovo Research, China {shisheng2, duyz1 and fanwei2}@Lenovo.com

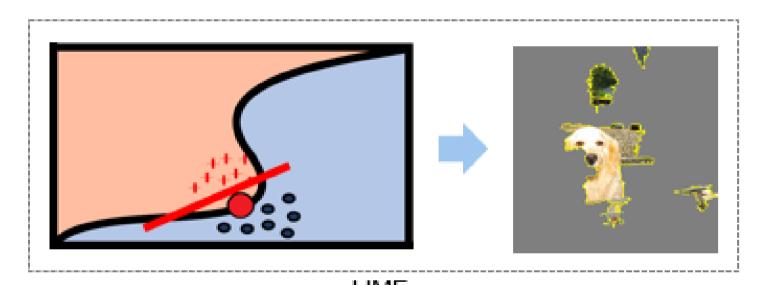
Abstract

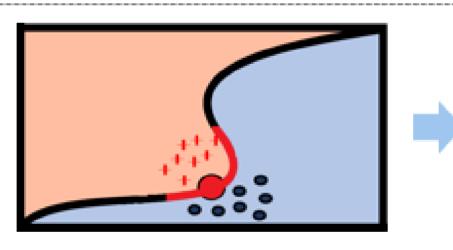
- > There are two drawbacks in current existing local explanations. Perturbed samples ignore the intrinsic features correlation. Moreover, most existing methods assume the decision boundary is locally linear.
- > We design and develop a novel, high-fidelity local explanation method to address the above challenges. KLFDS: Kernel-based LIME with Feature Dependency Sampling.

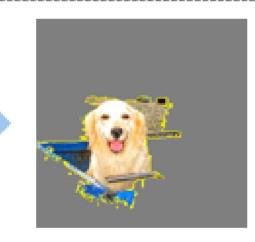
Problem formulation

Problems:

- > Perturbed samples ignore the intrinsic correlation between features
 - The visual features of natural objects exhibit a strong correlation in the spatial neighborhood
 - False information contributors lead to poorly fitting of the local explanation model





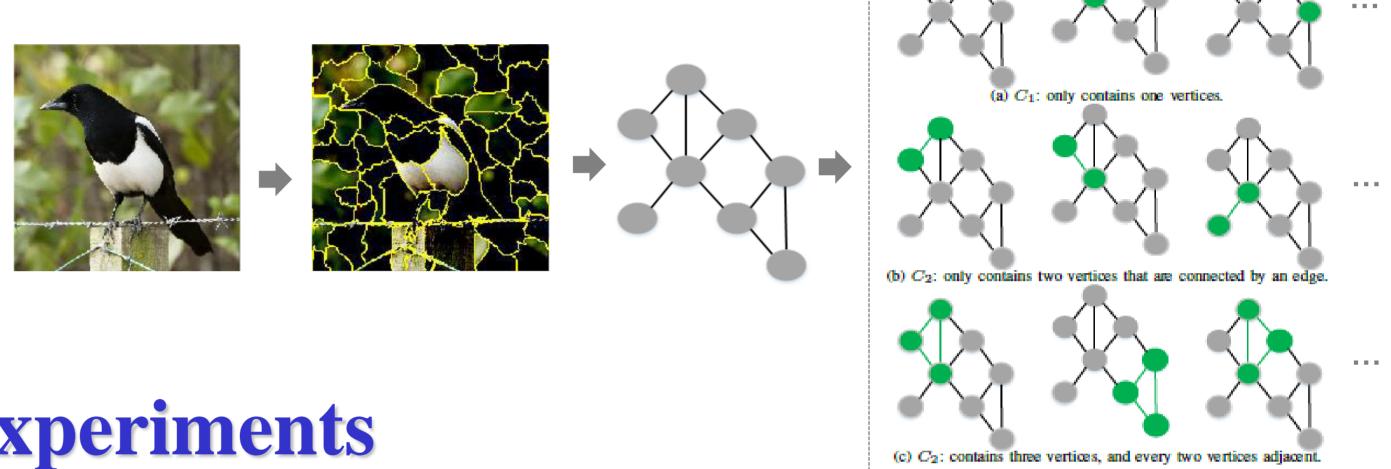


Problems:

- Most existing methods assume the decision boundary is locally linear.
 - This may produce serious errors as in most complex networks, the local decision boundary is non-linear.

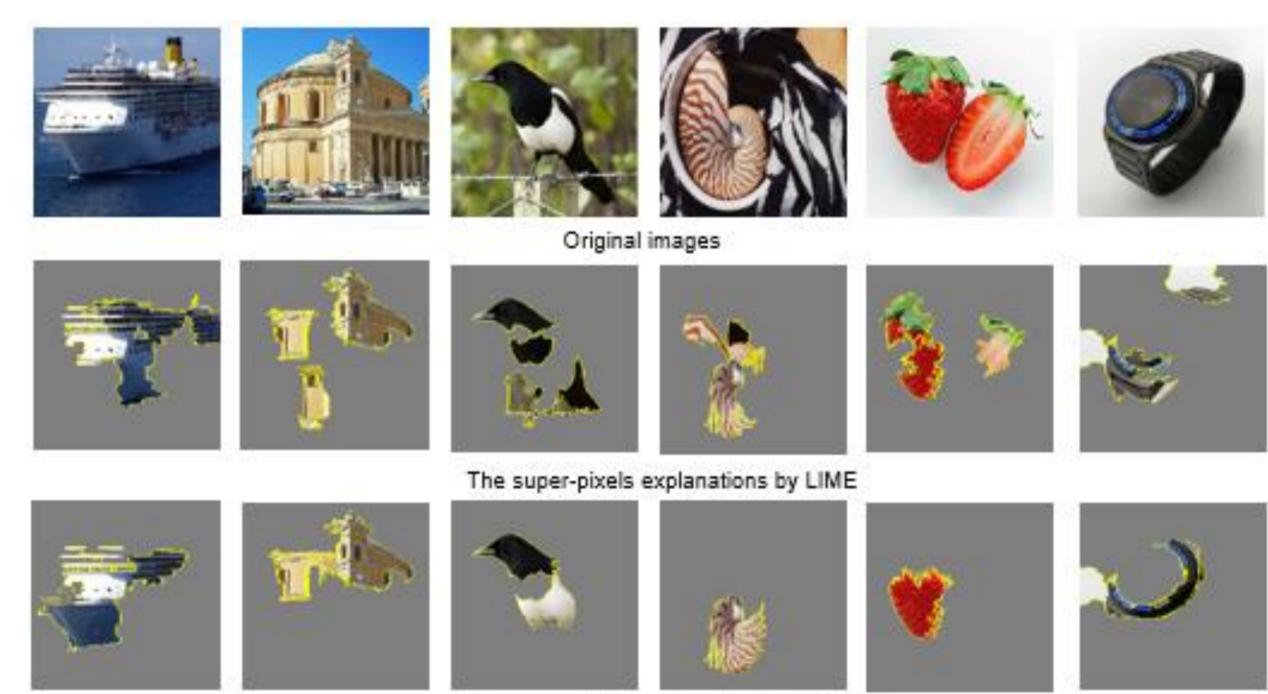
KLFDS

Proposed method


KLFDS: Kernel-based LIME with Feature Dependency Sampling

- > Design an unique local sampling process which incorporates the feature clustering method to handle the feature dependency problems.
 - Convert the super-pixel image into an undirected graph
 - Perturbed sampling operation is formalized as clique set construction problem
- > Adopt SVR with kernel function to approximate nonlinear boundary.

Algorithm 2 Kernel-based LIME with Feature Dependency Sampling (KLFDS)


Require: Classifier f, Instance x,

- 1: get interpretable presentation of x' (e.g. superpixel image for image and bag of word for text)
- get f(x') by classifier f
- 3: incorporate the feature clustering method into sampling process to activate a subset of features
- 4: initial Z ← {}
- 5: for $z' \in C$ do
- get z by recovering z'
- $Z \leftarrow Z \cup (z_i', f(z_i), \pi_x(z_i))$
- 8: end for
- 9: use kernel function to project data points into higher dimensional feature space: $g(x, w) = \sum_{i=1}^{N} w_i k(x x')$.;
- use the support vector regression to search for a hyperplane
- 11: return feature coefficient

Experiments

- > Perform various experiments to explain the Google's pre-trained Inception neural network on Imagenet database.
- > Compared with LIME in term of interpretability and fidelity, KLFDS has better performance in explaining classification.

The super-pixels explanations by KLFDS

	f(x)	g(x)	Err	R^2
LIME	$P_{castle} = 0.7646$	0.9857	0.2211	0.3219
KLFDS		0.7633	0.0012	0.896
LIME	$P_{yawl} = 0.6076$	0.8129	0.2053	0.4662
KLFDS		0.6066	0.001	0.9803
LIME	$P_{apple} = 0.9943$	1.3028	0.3085	0.5769
KLFDS		0.9931	0.0012	0.8118
LIME	$P_{church} = 0.2886$	0.5133	0.2248	0.4644
KLFDS		0.288	0.0005	0.5890
LIME	$P_{magpie} = 0.9462$	1.2854	0.2655	0.3602
KLFDS		0.945	0.0010	0.7955
LIME	$P_{strawberry} = 0.9797$	1.579	0.5994	0.5299
KLFDS		0.9784	0.0013	0.8282
LIME	$P_{liner} = 0.9669$	1.2422	0.2753	0.6341
KLFDS		0.9657	0.0012	0.8414
LIME	$P_{watch} = 0.9495$	1.0169	0.0674	0.5834
KLFDS		0.9483	0.0013	0.9980
LIME	$P_{nautilus} = 0.9710$	1.3556	0.3846	0.3949
KLFDS		0.9704	0.0006	0.8872

Conclusion

> By simultaneously preserving feature dependency and local non-linearity, KLFDS produces high-interpretability and high-fidelity explanations.