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Situation: Standard Deep Neural Networks (DNN) lack in the estimation of uncertainty
associated with predictions.

Problem: In autonomous driving, for example, predictions must be reliable to avoid life-
threatening situations.

Task: Provide models that measure epistemic uncertainty that describes the reliability of
a prediction, and aleatoric uncertainty which describes the risk of a predicted class while
maintaining proper generalization capabilities.

Approach: AE-DNN, a method for separating Aleatoric and Epistemic uncertainty in DNN.
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(a) Low epistemic uncertainty, low aleatoric uncertainty: ideal as predictions are reliable.

(b) Low epistemic uncertainty, high aleatoric uncertainty: predictions are reliable, but not
distinct (e.g., due to sensor noise).

(c) High epistemic uncertainty: predictions are unreliable (aleatoric uncertainty can be disre-

garded).
J

AE-DNN combines two objective functions — the first optimizing on in-
distribution (ID) samples, the second on out-of-distribution (OOD) samples
— into one by means of a convex combination.

Characteristics:

o At run-time, AE-DNN allows for a detection of samples that were never seen during
training (referred to as OOD detection) or an estimate of the risk coming with a decision.

o For computational efficiency, the inference avoids multiple forward passes through DNN
as needed in ensembles, for instance.

o The inference is deterministic in the sense that the same input always leads to the same
output (in contrast to Bayesian NN or Monte Carlo dropout).

o OOD samples are generated by means of Generative Adversarial Networks (GAN). As a
result, AE-DNN does not require explicitly provided OOD data sets.

o The hyperparameter within the convex combination (OOD vs. ID) allows for a control of
the degree of desired certainty in a concrete application.

A comparison to related techniques for uncertainty modeling in DNN is given below. We
denote optimization criteria and mark benefits and flaws by + and —.

Epistemic Aleatoric Inference Training  ID Optim.  OOD Optim.
Uncer.  Uncer. Time  Time Criterion Criterion
Ordinary — + ++ ++ MLE N/A
Ensembles ~ + ++ - —— MLE N/A
Dropout + + — + MLE N/A
EDL —— —— ++ ++ Bayes-risk + KL N/A
PN ++ —— ++ + KL KL
AE-DNN ++ + ++ + MLE KL

The most similar approach to AE-DNN is Prior Networks (PN) which differs regarding the
ID optimization criterion (Kullback-Leibler (KL) in PN and Maximum Likelihood (MLE) in

LAE-DNN). )

Idea: Inspired by the ideas of (1) using a Dirichlet distribution as the target distribution to be optimized and (2) the ability of GAN to generate OOD samples, we propose AE-DNN which
combines both ideas and allows for an intuitively understandable separation of aleatoric and epistemic uncertainty.

The optimization of the model parameters in our approach is based on a convex-combination of two different, but complementary objective functions. We can summarize our method as follows:

A. For ID samples, we optimize the parameters of the DNN such that its output defines a Dirichlet-Categorical distribution over the classes.

B. For OOD samples, we optimize the parameters of the DNN to enforce the Dirichlet distribution over the class probabilities, which is part of the above Dirichlet-Categorical distribution, to be a

uniform distribution over the simplex of possible values.

C. Since we obtain a Dirichlet distribution for every sample, we can derive measures describing the heteroscedastic aleatoric and epistemic uncertainty.

Uncertainty Measures: Based on the Dirichlet parameters estimated by the output of our DNN, we are able to define separate measures for aleatoric and epistemic uncertainty, both yielding

values in the unit interval:

The aleatoric uncertainty u, € [0,1] of a sample x* is given by

_ Hly'la = f“(x*) + 1]
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where H [-] denotes the entropy, f“(x*) is the model output for sample x*, K is the number
of classes, and the one-hot-encoded label y* is distributed according a Dirichlet-Categorical
distribution. Intuitively, the aleatoric uncertainty u, tends to be high if the class probabilities
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The epistemic uncertainty u, € [0,1] of a sample x* is given by
K
[E6c) + 111
It approaches one if the output f“(x*) is small (i.e., has a small 1-norm). In contrast, if the
model’s output f“(x*) has a high 1-norm, the epistemic uncertainty becomes small (i.e., ap-
proaches 0). That is, the epistemic uncertainty is high for samples that are not represented in
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derived from the Dirichlet-Categorical are close to a uniform distribution (and vice versa).

the training dstirbution. )

Experimental Evaluation

We evaluate our method on different image data sets by considering train, validation, and test splits. To evaluate epistemic and aleatoric uncertainty, we use common measures such as the Area
Under Receiver Operating Characteristic Curve (AUROC), Uncertainty Histogram (UH), Expected Calibration Error (ECE), Negative Log-Likelihood (NLL), and Brier Score (BS). Since the
generalization of a DNN is of crucial importance, we additionally report the accuracy.

The table below summarizes exemplary the results for SVHN (as ID) vs CIFAR10 (as OOD). For further details and additional results, we refer to our implementation which is available at
https://github.com/hsljc/ae-dnn.

Generalization Aleatoric Uncertainty Epistemic Uncertainty

Data Sets Methods
Accuracy (1) | ECE ({) NLL (J) BS () |AUROC (1) UH
Ordinary 0.875+0.009 [0.01240.010 0.44040.031 0.018+0.001/0.8504-0.028 5000 =
Ensembles 0.9004:0.004 |0.046:£0.004 0.3614:0.015 0.015::0.001/0.913+0.004 =k
Dropout 0.881+0.010 |0.01540.008 0.40040.026 0.017+0.001|0.9214-0.009 £ Prionhet
5\6'5'."\' EDL 0.196-0.000 0.089--0.007 2.29140.011 0.090-:0.000(0.615+0.017 57"5‘““'
CIFARIO | PN (OOD gen.) | 0.84040.038 {0.10740.036 0.589+0.134 0.02540.006|0.93340.046 = 10000
AE-DNN (OOD gen.)| 0.859:£0.014 |0.014--0.009 0.485::0.038 0.021+0.002/0.970+£0.017
PN (OOD av.) | 0.88240.009 |0.101+0.031 0.468--0.032 0.019-4-0.001|0.993-0.002

0.01940.005 0.427+0.033 0.018+0.001|0.997+0.001 R

Normalized Uncertainty

AE-DNN (00D av.) | 0.879+0.011




