What is DeepScores?

DeepScores is a vast collection containing 300'000 sheets of written music. The music has been rendered in high quality and annotated with ground truth for object classification, object detection and semantic segmentation. While DeepScores has been designed with Optical Music Recognition in mind, it poses a number of very interesting challenges for general computer vision. Among them are:

- Extremely imbalanced classes
- High size disparity between classes
- Large number of symbols per page
- Class label can depend on context

The dataset, instructions as well as all the code needed to test the dataset and recreate the presented baselines is available at:

- https://zenodo.org/record/4012193
- https://github.com/tuggeluk/mmdetection/tree/DSV2_Baseline_FasterRCNN

Improvements in DeepScoresV2

Additional Annotated Classes

DeepScoresV2 features a wider variety of annotated symbol classes, increasing the total number of annotated classes to 135. Notably, it also includes non-fixed shape symbols such as ties (blue) and slurs (yellow) as seen below.

Oriented Bounding Boxes

Annotations in object detection datasets are usually stored as rectangles which are aligned with the base image. This can lead to very inaccurate annotations and overlaps, especially for long and thin objects that stand at an angle. We incorporated bounding boxes at an angle (yellow) into DeepScoresV2 to address this issue.

Rhythm and Pitch Information

Optical music recognition is a challenging task beyond the mere localization and identification of notation elements. DeepScoresV2 features also higher-level annotations, namely, the onset (starting beat) of every object and the pitch of the noteheads.

Instance Segmentation Annotations

To allow researchers the maximum freedom in their model design, we have also added instance segmentation ground truth.

Baseline Results

Deep Watershed Detector

The Deep Watershed Detector was trained on full resolution images, with ledgers and staffs disabled due to overlap with other symbols. The biggest issues of the DWD in this application is the low accuracy of the bounding boxes (see predictions below) which leads to an AP@0.5 of 0.503 but a mAP of only 0.203.

Faster R-CNN

We used Faster R-CNN with a HRNet backbone as our second baseline. It achieves a very high score with an AP@0.5 of 0.799 and a mAP of 0.700. It produces a very high bounding box accuracy (as seen below); however, the stems are missed completely, and its performance degrades significantly for rare symbols.

Ressources

The dataset, instructions as well as all the code needed to test the dataset and recreate the presented baselines is available at:

- https://zenodo.org/record/4012193
- https://github.com/tuggeluk/mmdetection/tree/DSV2_Baseline_FasterRCNN