Viviana Beltrán, Mickaël Coustaty, Nicholas Journet, Juan C. Caicedo and Antoine Doucet

Motivation

- performance Bad due to problems in data.
- and straightforward Powerful deep learning models not able to use classical imbalance learning strategies
- Different levels of imbalance:
- The number of attributes per image is different.
- The problem of unrepresented 'attribute-value' or classes combinations.
- Inconsistency of labels/classes given annotators by pairs very subjective, which are different, and can be incorrect.

Proposed Strategies

Adaptations for different levels of imbalance:

• Class-level attribute transfer: Total and partial

Adaptations for two classical imbalanced strategies:

- Sampling: Modifying the strategy to create batches \rightarrow two different strategies to assign weights for samples.
- Cost-sensitive learning: Assigning weights to each class. Specialized loss function (Focal Loss)

LaBRI

Multi-Attribute Learning With Highly Imbalanced Data

attribute Multitask Multilabel

Brown

White

Olive (TP)

Gray

Yellow

 Independent model for each

Yellow

Database	# classes	# attributes	# Train	# Test		
CUB	200	312 (239 used)	5,994	5,794		
AwA2	50	85	29,409	7,913		
celebA	10,177	40	162,770	19,962		

Setting	Accuracy (%)		
None strategy	72.78		
Data augmentation	73.06		
Weighted Random Sampler with Different Weights + No Replacement	72.57		
Weighted Random Sampler with Equal Weights + No Replacement	73.21		
Weighted Random Sampler with Equal Weights + Replacement	73.24		
Data augmentation + Weighted Loss	66.98		
Weighted Random Sampler with Equal Weights + Replacement + Weighted Loss	65.70		

	CUB			AwA2			CelebA			
	Model	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score
Macro Avg	SVM	24.15	27.52	22.22	58.24	59.84	51.17	50.66	79.26	59.50
	MLKNN	13.04	12.28	12.48	53.82	55.71	47.02	41.60	41.25	40.61
	Log Reg	29.59	10.71	14.21	58.08	60.46	51.47	65.16	46.57	51.65
	RandomF	79.31	1.28	1.92	64.30	51.88	46.33	58.15	23.42	27.58
	DecisionT	10.29	7.15	8.08	51.60	52.92	44.43	42.73	28.49	32.09
	ELM	7.71	32.63	10.34	40.38	56.68	41.06	31.52	45.52	34.73
	GaussianNB	30.30	14.54	17.04	55.32	54.08	45.95	44.32	53.98	46.53
	Deep Multilabel	23.01	17.99	18.71	77.67	70.61	73.31	78.02	70.50	73.15
Weighted Avg	SVM	35.49	51.10	41.12	72.87	66.80	67.14	67.02	80.56	71.42
	MLKNN	26.84	26.70	26.67	69.06	63.69	63.47	55.23	58.52	56.48
	Log Reg	47.06	21.43	26.94	73.26	66.98	67.41	72.55	62.61	65.09
	RandomF	50.61	7.49	9.29	74.17	63.17	62.47	65.42	45.78	49.20
	DecisionT	23.35	18.65	20.62	67.85	61.26	61.56	58.63	49.77	51.93
	ELM	21.98	37.15	25.86	61.34	56.96	57.16	52.36	56.51	53.32
	GaussianNB	41.49	26.49	30.87	69.91	62.55	62.53	57.48	64.66	59.38
	Deep Multilabel	46.00	40.73	41.42	83.19	78.36	80.05	84.35	77.12	79.67

Conclusions

- CUB imbalanced database as our main use case.
- Straightforward deep learning models offer suitable performances.
- Adapted strategies for different levels of imbalanced.
- replacement).

RESULTS

• Study of a fine-grained attribute classification problem with • Most bad performance problems are due to the data itself.

• Adapted strategies concerning 'Sampling' and 'Cost-Sensitive Learning approaches (same weights to all samples but with

• Loss function suitable to the imbalanced problem (Focal Loss).