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An Invariance-guided Stability Criterion
for Time Series Clustering Validation

Time series clustering [1,2]
Time series: Type of data naturally organized as sequences. Functional data varying
along one dimension (curve), often time but not necessarily.
Examples: sensor measurements, biological data, economic data. . .
Clustering: Finding groups called clusters such that elements sharing the same cluster
are similar, and elements belonging to different clusters are dissimilar.

Challenges
I High dimensionality
I Temporal correlation

I Invariance to transformations
I Varying lengths. . . and many others!

Invariances
I Scale, offset
I Shifting
I Warping
I Occlusion
I Complexity, noise. . .
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Cluster stability analysis for model selection [6,7]
Model selection: Evaluating results of cluster analysis in a quantitative and objective
fashion, in order to select the right number of clusters in a data set, or to tune any hyper-
parameter of a clustering algorithm. Internal clustering validity indices [5] incorporate
strong priors on cluster geometry.

Cluster stability analysis: a model-agnostic principle [6]
Principle: A clustering algorithm applied with the same parameters to perturbed versions
of a data set should find the same structure and obtain similar results.

Stadion: trade off between- and within-cluster stability [7]
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Invariance-guided stability-based model selection

Principle
Use prior knowledge on data invariances to guide the perturbation process.
E.g. shift-invariant and noisy data → random shifting and noise perturbation.

Perturbing latent factors of variation to discover resilient structures in the data.

Selecting K: a few results
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Warp invariance (K-medoids/DTW)

0 20 40 60 80 100 120

2

1

0

1

2

3

Cluster 1

0 20 40 60 80 100 120

2

1

0

1

2

3

Cluster 2

0 20 40 60 80 100 120

2

1

0

1

2
Cluster 3

1 2 3 4 5 6
K

0.00

0.05

0.10

0.15

0.20

0.25

St
ad

io
n

CBF - Random shifting + uniform noise (K-medoids/DTW)
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