An Invariance-guided Stability Criterion *
for Time Series Clustering Validation

Time series clustering [1,2] Data invariances in clustering

Time series: Type of data naturally organized as sequences. Functional data varying 22
along one dimension (curve), often time but not necessarily. 4 %
Examples: sensor measurements, biological data, economic data. ..

Clustering: Finding groups called clusters such that elements sharing the same cluster
are similar, and elements belonging to different clusters are dissimilar.
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Challenges g ®
» High dimensionality » Invariance to transformations @
» Temporal correlation e Varying lengths. .. and many others!
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Selecting K': a few results
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Cluster stability analysis for model selection [6,7] N AN Y )
Model selection: Evaluating results of cluster analysis in a quantitative and objective J\ /\ wawml J\ M
fashion, in order to select the right number of clusters in a data set, or to tune any hyper- j\7 M

parameter of a clustering algorithm. Internal clustering validity indices [5] incorporate
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strong priors on cluster geometry. Warp invariance (K.medoids/DTW)

Locations

\

Cluster stability analysis: a model-agnostic principle [6] o6
Principle: A clustering algorithm applied with the same parameters to perturbed versions 04
of a data set should find the same structure and obtain similar results. g
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Stadion: trade off between- and within-cluster stability [7] & i
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Invariance-guided stability-based model selection S 015
&
Principle o
Use prior knowledge on data invariances to guide the perturbation process. 003
E.g. shift-invariant and noisy data — random shifting and noise perturbation. 0.00 —557 2 F— s 6
K
Perturbing latent factors of variation to discover resilient structures in the data.
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