Keio University

Single-modal Incremental Terrain Clustering from Self-Supervised Audio-Visual Feature Learning

Reina Ishikawa, Ryo Hachiuma, Akiyoshi Kurobe, and Hideo Saito {reina-ishikawa, ryo-hachiuma, kurobe.akiyoshi, hs}@keio.jp

Abstract

We present a novel selfsupervised framework for terrain type clustering using audio-visul data. Our method enables the terrain type clustering even if one of the modalities (either image or audio) is missing at the test-time.

Motivation

The key to an accurate understanding of terrain is to extract the informative features from the multi-modal data obtained from different devices, such as RGB cameras, depth sensors.

Training

Problems:

1. The data from multiple modal sensors are not always useful

- e.g., color is not useful for low illumination environment. and audio is not useful for noisy environment
- 2. The clustering model should update sequentially
- 3. Manual labeling is required

Contributions

- A single-modal incremental terrain clustering framework learned in a self-supervised manner from audio-visual data
 - Combine an MVAE[1] for feature extraction
 - and an IGMM[3] for cluster prediction
 - Clusters of terrains are updated during test-time.
- Input preprocessing
- Generate edge image from visual data
- Convert audio waveform into cochleogram
- Evaluate the clustering accuracy and conduct extensive ablation studies

Method

Training: Multimodal-feature learning

The training is conducted multi-modal manner to extract the informative feature using the paradigm of MVAE [1].

We encode three modalities (i.e., RGB, edge image, and audio). The loss function:

 $\mathcal{L} \equiv ELBO(x^{image}, x^{edge}, x^{audio}) + ELBO(x^{image}, x^{edge}) + ELBO(x^{audio}) + \beta D_{KI}$ β : an annealing factor [2]

Testing: Single-Modal Incremental Clustering

Our method can predict the terrain cluster from a single modality data (either image or audio).

Even though the unseen terrain type appears, IGMM assigns a new cluster index.

Dataset

We used a dataset introduced in [4], which includes 21 independent movies with seven classes.

Dataset Splitting:

- Training set : 41315
- Testing set : 7734

Results

Oualitative Evaluation

Our method successfully predict the correct terrain cluster index from a single modality data.

Ouantitative Evaluation

2. IGMM

The incremental update at the test time improves the clustering accuracy

Method	Input	NMI ↑	ACC (%) ↑	
[4] w/o CNN	Audio+image	0.589	58.12	
[4] w/ CNN	Image	0.001	23.18	
Ours w/o update	Image	0.401	48.90	
Ours w/ update	Image	0.377	50.63	
Ours w/o update	Audio	0.353	50.30	
Ours w/ update	Audio	0.500	74.39	

Ablation Study on Visual Input Ta

aking RGB+Edge	input out	tperformed	only taki	ng RGB inpu	
	w/o update		w/ update		
Input	NMI ↑	$ACC(\%) \uparrow$	NMI ↑	$ACC(\%) \uparrow$	
RGB	0.272	40.16	0.389	57.53	
Ours (RGB+Edge)	0.353	50.30	0.500	74.39	

Ablation Study on Sound Input

Cochleogram method is the most suitable for preprocessing among the three preprocessing methods. w/o undate w/ undate

Defeneració	
References	-

[1] M. Wu and N. Goodman, "Multimodal generative models for scalableweakly-supervised learning," inInternational Conference on NeuralInformation Processing Systems, 2018, pp. 5580-5590

- [2] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner, "beta-vae: Learning basic visual concepts with a constrained variational framework," in International Conference on Learning Representations, 2016.
- [3] P. Engel and M. Heinen, "Incremental learning of multivariate gaussianmixture models," in Advances in Artificial Intelligence, 2010, pp. 82-91.

[4] A. Kurobe, Y. Nakajima, H. Saito, and K. Kitani, "Audio-visual self-supervised terrain type discovery for mobile platforms," CoRR, vol.abs/2010.06318, 2020

Rough

				ep entre	
Method	Input	NMI	ACC(%)	NMI	ACC(%)
MFCCs	Audio	0.559	55.92	0.235	34.73
MFCCs + cochleogram	Audio	0.320	0.389	0.443	49.98
Ours (cochleogram)	Audio	0.401	48.90	0.377	50.63
MFCCs	Image	0.295	47.26	0.389	61.02
MFCCs + cochleogram	Image	0.318	45.72	0.423	67.71
Ours (cochleogram)	Image	0.353	50.30	0.500	74.39