Multi-stage Attention based Visual Question Answering

Aakansha Mishra, Ashish Anand, Prithwijit Guha

Problem Statement

- Given an image (I) and a question (q), the objective of VQA system is to predict the most probable answer (a)
- ➢ Most of literature solved VQA as classification problem

Motivation

- In general, it is always not possible to understand input (image, question, video) in one go.
- □ Specifically for VQA, it is always not possible to understand image in one go
- Sometimes it is required to look into image multiple times in context of question and to understand question in context of image.
- □ With this intuition our proposed model works.

Key Contributions

- An alternate attention module that helps to learn better embedding for the image and question is proposed
- Multi-stage loss is proposed to overcome the gradient vanishing / explosion problem
- Cosine Normalization (cosine distance) based metric is a better distance measure in the joint embedding space and provides better performance.

Framework: Basic Modules

Overall Framework

¹ Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, NIPS 2015.

Dataset: Task Directed Image Understanding Challenge (TDIUC)

2	Object Presence Is there a traffic light in the photo?	Subordinate Object Recognition What animal is in the picture?	Scene Classification What is the weather like?
	Sport Recognition What sport are they playing?	Carlos Carlos	Activity Recognition What is the dog doing?
	Other Attributes What is the fence made of?		Counting How many dogs are there?
	Positional Reasoning What is to the left of the woman?	- 11 -	Absurd What color is the couch?
	Sentiment Understanding How is the woman feeling?	Color Attributes What color are the woman's shorts?	Utility/Affordance What object can be thrown?

² Kafle et al, "An Analysis of Visual Question Answering Algorithms", ICCV 2017.

Evaluation Metrics

- Overall Accuracy: Ratio of correctly predicted with that of total samples
- Mean-Per-Type: Due to skewed distributions of question types, if each test question is treated equally, then it is difficult to assess performance on rarer question-types
- □ To compensate, compute accuracy for each question-type separately
- Final unified accuracy is computed as Arithmetic and Harmonic Means across all per question-type accuracies, referred to as Arithmetic Mean-Per-Type (Arithmetic MPT) Accuracy and Harmonic Mean-Per-Type Accuracy (Harmonic MPT)

Result Comparison - I

Question Type	SAN	RAU	MCB	QTA	BAN	Ours
Scene Recognition	92.30	93.96	93.06	93.80	93.10	94.64
Sport Recognition	95.50	93.47	92.77	95.55	95.7	95.90
Color Attributes	60.90	66.86	68.54	60.16	67.50	74.74
Other Attributes	46.20	56.49	56.72	54.36	53.20	60.62
Activity Recognition	51.40	51.60	52.35	60.10	54.0	61.26
Positional Reasoning	27.90	35.26	35.40	34.71	27.9	41.50
Object Recognition	87.50	86.11	85.54	86.98	87.5	88.87
Absurd	87.51	93.40	84.82	100.0	94.47	94.99
Utility & Affordance	26.30	31.58	35.09	31.48	24.0	39.77
Object Presence	92.40	94.38	93.64	94.55	95.1	95.78
Counting	52.10	48.43	51.01	53.25	53.9	57.61
Sentiment Und.	53.60	60.09	66.25	64.38	58.70	68.30
Overall Accuracy	82.00	84.26	81.86	85.03	85.5	86.90
Arithmetic-MPT	65.00	67.81	67.90	69.11	67.4	72.80
Harmonic-MPT	53.70	59.00	60.47	60.08	54.9	66.38

Result Comparison - II

Model	Overall Accuracy
BTUP	82.91
QCG	82.05
RN	84.61
DFAF	85.55
RAMEN	86.86
MLIN *	87.60
Ours	86.90

Result Comparison - III (Without 'Absurd' Category)

Without Absurd							
Metrics MCB QTA BAN Proposed							
Overall Accuracy	78.06	80.95	81.9	84.58			
Arithmetic-MPT	66.07	66.88	64.6	70.46			
Harmonic-MPT	55.43	58.82	52.8	63.43			

Ablation Analysis – II (With Cosine Normalization)

Metrics	m = 1	m = 2	m = 3	m = 4	m = 5
Overall Accuracy	85.04	86.00	86.61	86.90	85.93
Arithmetic-MPT	71.92	72.16	72.02	72.80	70.37
Harmonic-MPT	65.83	65.89	64.73	66.38	61.32

Ablation Analysis - III (Without Cosine Normalization)

Metrics	m = 1	m = 2	m = 3	m = 4	m = 5
Overall Accuracy	85.02	85.51	86.12	86.38	85.64
Arithmetic-MPT	71.23	71.83	72.10	72.04	68.12
Harmonic-MPT	64.97	65.33	65.58	65.72	57.38

Conclusion

- An alternate attention scheme leveraging attention from textual to visual space and vice-versa to obtain enhanced feature representation in both textual and visual domains.
- Proposed bi-directional attention is applied multiple times, making it a multistage model.
- Multi-stage loss scheme is proposed to overcome the potential gradient vanishing problem.
- Comparative analysis indicates that the proposed bi-directional attention model outperforms existing methods on the TDIUC dataset.

Thank You !