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Abstract
We propose a monocular vision assisted localization algorithm, that will

help a UAV navigate safely in indoor corridor environments. Always, the aim
is to navigate the UAV through a corridor in the forward direction by keeping
it at the center with no orientation either to the left or right side. The algo-
rithm makes use of the RGB image, captured from the UAV front camera, and
passes it through a trained Deep Neural Network (DNN) to predict the position
of the UAV as either on the left or center or right side of the corridor. Depend-
ing upon the divergence of the UAV with respect to an imaginary central line,
known as the central bisector line (CBL) of the corridor, a suitable command
is generated to bring the UAV to the center. When the UAV is at the center
of the corridor, a new image is passed through another trained DNN to predict
the orientation of the UAV with respect to the CBL of the corridor. If the UAV is
either left or right tilted, an appropriate command is generated to rectify the ori-
entation. We also propose a new corridor dataset, named UAVCorV1, which
contains images as captured by the UAV front camera when the UAV is at all
possible locations of a variety of corridors. An exhaustive set of experiments
in different corridors reveal the efficacy of the proposed algorithm.

Introduction

• The only sensor used is a forward
facing static camera due to its light
weight, low power consumption.
• Although more challenging,
monocular vision processing is
more efficient than stereo vision
for real-time navigation tasks
• A DNN based model is proposed
for safe localization a UAV in in-
door corridor environments.

• Our goal is to autonomously navigate a UAV in indoor corridors with-
out any collision either with the side walls or with the front wall.
• Unlike previous methods, where the DNN models were designed to
predict flight commands directly, our proposed method makes use
of an important characteristic of a corridor, the Central Bisector Line
(CBL), to generate commands.

Contributions
1.We propose a method, which uses two different DNN models for
safe localization of a UAV in corridor environments. The first DNN
is responsible for predicting the deviation of the UAV in terms of
translation whereas the second DNN predicts the orientation.

2. The algorithm generates necessary control commands to keep the
UAV along the CBL of the corridor and continuously monitors the
position to rectify any deviation.

3. We propose a new corridor dataset, UAVCorV1 [1], which contains
images as captured from the UAV front camera from different po-
sitions of a number of corridors, having varying dimensions and in-
tensity exposure.

4. The dataset is trained on several state-of-the-art DNN models for
predicting both translational and rotational deviation. The best
model among them based on few accuracy metrics is chosen for
real-world navigation flights.

Central Bisector Line

Figure 1: Central bisector line of a corridor. It's an imaginary line used as reference.

Dataset Creation

Figure 2: Images as captured by the UAV front camera from 9 different possible
alignments over a horizontal line perpendicular to the CBL.

• At a certain place inside the corridor, three different locations on a
horizontal line, which is perpendicular to the CBL; the center and
two extreme sides of the corridor, are selected. At each location on
the horizontal line, the images are captured while the UAV is tilted
in three different directions: center, left, and right tilt. Hence, we will
have 9 different images corresponding to a particular horizontal line.
• For each image, a similar image is captured by placing two markers
on the CBL of the corridor. These images are known as bisector
images.

CBL creation with Marker Image

(a) Actual image (b) Image with markers (c) CBL on image plane

Figure 3: Process of obtaining the CBL on the image plane using markers. These
are connected by a red colored line, which forms the CBL on the image plane.

Target Data Generation

(a) Left side of CBL (b) Right side of CBL (c) On the CBL

Figure 4: Translational Shift: Three different positions of the UAV over a horizontal
line perpendicular to the CBL.

(a) Aligned with the CBL (b) Left tilted (c) Right tilted

Figure 5: Rotational shift: Three different orientations of the UAV, when it is situated
on the CBL.

• For each image, the dataset now contains two target values:
1. Angle of the CBL (for rectifying the translational deviation)
2. Distance of the CBL (for rectifying the rotational deviation).

UAV Navigation
• The process of UAV navigation is a two-step process occurring con-
secutively
1. Rectifying the translational deviation (side-wise variation) for
bringing the UAV to center over the CBL

2. Rectifying the rotational deviation (change in orientation) to align
the UAV with the CBL, when the UAV is already at the center

Network Structure

Figure 6: Architectural flow of the proposed DNN based corridor navigation model.
Both processes are achieved by processing the images from the UAV front camera
through pre-trained DNNs, that predict the deviations.

Table 1: Network structure

Input Pre-trained
Models

Augmented
Convolution Layers

Augmented last Fully
connected layer Output layer

320× 180

AlexNet no augmentation
of convolution layer 4096× 1

1× 1VGG-16
Conv2d(512, 1024, 1× 1)
Conv2d(1024, 128, 5× 5)
Conv2d(128, 16, 1× 1)

96× 1

InceptionV3

Main: Conv2d(2048, 1024, 1× 1)
Conv2d(1024, 512, 2× 2)
Conv2d(512, 128, 3× 3)

Aux: Conv2d(768, 128, 4× 4)
Conv2d(128, 32, 2× 2)

Main: 256× 1
Aux :640× 1

ResNet-50 Conv2d(2048, 1024, 1× 1)
Conv2d(1024, 128, 5× 5)
Conv2d(128, 8, 1× 1)

96× 1
ResNet-101

ResNet-152

DenseNet-201
Conv2d(1920, 1024, 1× 1)
Conv2d(1024, 128, 5× 5)
Conv2d(128, 16, 1× 1) 96× 1

DenseNet-161
Conv2d(2208, 1024, 1× 1)
Conv2d(1024, 128, 5× 5)
Conv2d(128, 16, 1× 1)

Loss Function: Mean Absolute Error

MAE(Ŷ , Y ) =
1

n

n∑
i=1

|ŷi − yi|,

where Ŷ = {ŷi}ni=1 and Y = {yi}ni=1 denote the predicted and target
values for a mini batch of size n, respectively.

Control Command generation

Algorithm 1: Control command generation
Input: Image From UAV front camera: img
Output: UAV direction: [pitch, roll, yaw]

1 angle = TrainedModelForAngle(img)
2 if angle out of bound for continously 1 second then
3 Land the UAV
4 if angle ≈ 90◦ then
5 dist = TrainedModelForDistance(img)
6 if dist ≈ 0.5 then
7 Actuate UAV in Pitch Forward
8 else if dist < 0.5− δ then
9 Actuate UAV in Yaw Left until dist ≈ 0.5
10 else
11 Actuate UAV in Yaw Right until dist ≈ 0.5

12 else if angle < 90◦ − δ then
13 Actuate UAV in Roll Right until angle ≈ 90◦

14 else
15 Actuate UAV in Roll Left until angle ≈ 90◦

16 return [pitch, roll, yaw]

Evaluation Metrics

Mean Squared Error : MSE(Ŷ , Y ) =
1

n

n∑
i=1

(ŷi − yi)
2,

Mean Absolute Error : MAE(Ŷ , Y ) =
1

n

n∑
i=1

|ŷi − yi|,

Mean Relative Error : MRE(Ŷ , Y ) =
1

n

n∑
i=1

|ŷi − yi|
yi

.

where Ŷ = {ŷi}ni=1 and Y = {yi}ni=1 denote the predicted and target
values for a mini batch of size n, respectively.

Experimental Results: Quantitative Comparison

Table 2: Evaluation metrics for the prediction of translational and rotational shift.

Pretrained
Model

Translational Deviation Rotational Deviation
MSE MAE MRE MSE MAE MRE

AlexNet 0.21997 1.72831 1.39280 5.5677 27.006 54.147
VGG-16 0.47318 2.84597 2.41795 1.1928 4.6213 13.533
InceptionV3 0.11929 1.44906 1.20959 0.0687 3.1364 10.485
ResNet-50 0.11253 1.50321 1.18916 0.0473 2.7485 9.0729
ResNet-101 0.11103 1.46875 1.17946 0.1186 4.2163 14.681
ResNet-152 0.11032 1.41558 1.16529 0.0662 3.4258 10.823
DenseNet-201 0.12383 1.79144 1.42709 0.0828 3.6442 12.142
DenseNet-161 0.05791 1.32693 1.08712 0.0326 2.5060 1.5570

Experimental Results: Qualitative Comparison
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Figure 7: Qualitative performance evaluation of translational deviation for different
corridor locations of National Institute of Technology, Rourkela, India. Ground truth
and predicted values are given in degree. GT: Ground truth, PR: Predicted.

TIIR Building Physics
Department

Life Science
Department

Computer Science
Department

GT: 0.488
PR: 0.491

GT: 0.805
PR: 0.808

GT: 0.547
PR: 0.528

GT: 0.167
PR: 0.163

Figure 8: Qualitative performance evaluation of rotational deviation for different cor-
ridor locations of National Institute of Technology, Rourkela, India. Ground truth and
predicted values are in the range [0, 1]. GT: Ground truth, PR: Predicted.

Real World Navigation Experiments
• Parrot A.R.Drone quadcopter is used for validation purpose.
• Image transmission delay through ROS is about 0.21s. Our DNN
model prediction takes about 0.08s for measuring both translational
and rotational deviation simultaneously. Also, the time required for
communicating a control command through ROS is about 0.21s.
• Hence, our algorithm can process at most two frames in one second,
which is sufficient to generate safe control commands and navigate
without collision.
• It may be noted that apart from our network prediction, different fac-
tors, such as control and state estimation affect the actual UAV flight
in real-world scenarios.
• We tested our algorithm across 50 trials in 10 different corridors, out
of which 43 trails were found to be successful.
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