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Motivation 
Enabling content level search in scanned documents. 

• We aim to make document collections more accessible by fusing text 

recognition and holistic approaches. 

Analysis 
• We generate multiple hypotheses (K) using the beam search decoding 

algorithm. Increasing the value of K results in improvement in the word 

recognition accuracy. 
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Text Recogniser and Deep Embeddings 

CRNN Architecture [2] takes in a word image and passes it through the Spatial 
Transform Layer (STN), followed by residual convolutional blocks which learn 
features maps. These feature maps are further given as an input to the BLSTM 

layer. 
 

End2End network [3] for learning both textual and image embedding using a multi-
task loss function. 

Fusing Text Recogniser and Deep Embeddings 
• We use EmbedNet for projecting deep embeddings to an updated 

embedding space. 

• Once trained, the deep embeddings used for recognition purpose are 

first passed through the EmbedNet. 
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• To further improve the word recognition accuracy, we propose a novel 

plug-and-play module called Confidence based Accuracy Booster (CAB). 

• CAB uses confidence scores and Euclidean distance. 

• CAB favours words with higher confidence scores. 

• Therefore, it helps in filtering out the noisy predictions. 

• We pass the input word image through the CRNN [2] and the End2End 

network [3] and get multiple (K) hypotheses and their corresponding 

embeddings, respectively. 

• The embeddings are then passed through the EmbedNet for 

generating an updated set of embeddings. 

• The Euclidean distances between the embeddings and the confidence 

scores from the CRNN are then passed through the CAB module for 

generating updated distances. This helps in selecting the correct 

prediction. 
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Results 
• Dataset 

• Quantitative Results 

• Qualitative Results 

Language Annotated Number of 
Pages

Number of Word Images

Hindi Yes 402 Train Validation Test

72,000 8,000 25,475

Sr. No. Method WRA Khigh (K)

1 Tesseract 35.435 1 (1)

2 CRNN 81.543 1 (1)

3 E2E + C 83.062 2 (20)

4 E2E + C + CAB 84.358 11 (20)

5 MLP 83.259 3 (20)

6 EmbedNet 83.216 2 (20)

7 MLP + CAB 84.782 20 (20)

8 EmbedNet + CAB 85.364 20 (20)
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• Corner Cases 

Conclusion and Future Work 
• We propose a new direction of improving word recognition by fusing 

word recognition and image embedding techniques. 

• As future work, we aim to create an end-to-end architecture for fusion. 
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