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Motivation

Enabling content level search in scanned documents.
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® We aim to make document collections more accessible by fusing text

recognition and holistic approaches.
Analysis

®* We generate multiple hypotheses (K) using the beam search decoding
algorithm. Increasing the value of K results in improvement in the word

recognition accuracy.
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Text Recogniser and Deep Embeddings
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CRNN Architecture [2] takes in a word image and passes it through the Spatial

Transform Layer (STN), followed by residual convolutional blocks which learn

features maps. These feature maps are further given as an input to the BLSTM
layer.
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Embedding

End2End network [3] for learning both textual and image embedding using a multi-
task loss function.

Fusing Text Recogniser and Deep Embeddings
®* We use EmbedNet for projecting deep embeddings to an updated

embedding space.
® Once trained, the deep embeddings used for recognition purpose are

first passed through the EmbedNet.
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® To further improve the word recognition accuracy, we propose a novel
plug-and-play module called Confidence based Accuracy Booster (CAB).

® CAB uses confidence scores and Euclidean distance.

® CAB favours words with higher confidence scores.

® Therefore, it helps in filtering out the noisy predictions.
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® We pass the input word image through the CRNN [2] and the End2End
network [3] and get multiple (K) hypotheses and their corresponding

embeddings, respectively.

® The embeddings are then passed through the EmbedNet for
generating an updated set of embeddings.

® The Euclidean distances between the embeddings and the confidence
scores from the CRNN are then passed through the CAB module for
generating updated distances. This helps in selecting the correct

prediction.
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Results

¢ Dataset
Language Annotated Number of Number of Word Images
Pages
Hindi Yes 402 Train Validation Test
72,000 8,000 25,475
® Quantitative Results
Sr. No. Method WRA Knigh (K)
1 Tesseract 35.435 1(1)
2 CRNN 81.543 1(1)
3 E2E+C 83.062 2 (20)
4 E2E + C + CAB 84.358 11 (20)
5 MLP 83.259 3 (20)
6 EmbedNet 83.216 2 (20)
7 MLP + CAB 84.782 20 (20)
8 EmbedNet + CAB 85.364 20 (20)
® Qualitative Results
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® Corner Cases

Word

Image EmbedNet + CAB Predictions
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Conclusion and Future Work

®* We propose

a new direction of improving word recognition by fusing

word recognition and image embedding techniques.

® As future work, we aim to create an end-to-end architecture for fusion.
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