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Overview

DNN acceleration

o Motivation for feature-map pruning

o Taxonomy & challenges

Proposed Discriminant Information Feature-map pruning
o Quantifying feature-maps discriminant power

o Differential discriminant for channel pruning

o Intra-layer mixed precision quantization

o Performance evaluation and inference speedups

Summary
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Feature-map Pruning: One of Many Efficient DNN Methods

Optimization goals for network inference

o Reduce network model size

o Speedup network execution time

o Maintain model accuracy

Observation that inspires feature-map pruning

o Biology: not all neurons are activated to solve a task
o Neural network:

Trained model has many redundant feature-maps
pruning which causes little degradation

Feature-maps can have (nearly) all Os due to RelL,U
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(ResNet50 on ImageNet)



Taxonomy & Challenges

o Core of feature-map pruning — determine which feature-maps to prune based on a importance
characterization metric

o Existing pruning methods

« Importance metric based on filter weights information, e.g. filter norm, filter geometric median

« Current discriminant feature-map pruning requires auxiliary cross-entropy losses for
measuring and selecting feature-maps — retraining step is heavy in both computation time and
human labor.

o Many importance metric performs no better than random selection
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Fig. 1. Comparison of channel selection criteria in terms of testing accuracy.
We prune VGG16 on CUB-200 with different FLOPs reductions.
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Proposed Feature-map Pruning Method

o Quantifying feature-map discriminant power

o Multi-class discriminant analysis maximize  tr(FTKLF) W DI =tr(K' + pl)"'Kp)
F:FT (K!+pI)F=I

o Relation to predictor learning arrrse = — tr(K! + p1)~'KY) + [YC||% = —DI + |[YC||

o Differential discriminant for feature-map pruning

- Given a desired channel sparsity k!, we aim to find k!C' channels that maximally preserve the
discriminant power
« Channel importance by measuring influence on the DI value, i.e. the difference of DI value when

m; = 1 (channel j is present) and m; = 0 (channel j is pruned)
¢} = tr{[diag(1)K' diag(1) + pI] ! diag(1)K'; diag(1)}— 5)
tr{[diag(1 — ej)I_(l diag(1 — e;) + pI]~! diag(1 — ej)KlB diag(1 —e;)}
By relaxing the binary constraint on the indicator vector m!, qul- can be approximated by the
derivative of DI with respect to m} (differential discriminant)

o o tr{[diag(m')K' diag(m') + pI] =1 diag(m')K!; diag(m')}
J

8m§. ml—1
(0)

= 2([K'] KK ),
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Performance Evaluation

o Pruning ResNet-18/50 and MobileNetV2 on ImageNet
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TABLE III
PRUNING RESULTS ON IMAGENET. “ATo0P-1": TOP-1 ACCURACY DIFFERENCE DUE TO PRUNING, CALCULATED AS pruned top-1 — pre-trained top-1.
“FLOPS”: FLOPS(PRUNING RATIO). “PARAMS.”: PARAMETERS(PRUNING RATIO). “-”’: RESULTS NOT REPORTED BY CORRESPONDING METHOD.
Model Method Top-1 (%) ATop-1 (%) FLOPs Params.
TAS [49] 70.65 — 69.15 -1.50 1.21E9 (33.3%) -
FPGM [12] 70.28 — 68.41 -1.87 1.05E9 (41.8%) -
ResNet]8 DI-greedy(Ours) 69.76 — 68.91 -0.85 1.04E9 (42.5%) 7.82E6 (33.1%)
Sampling [42] 69.76 — 67.38 -2.38 1.28E9 (29.3%) 6.57E6 (43.8%)
DCP [10] 69.76 — 67.35 241 0.98E9 (46.1%) 6.19E6 (47.1%)
DI-unif(Ours) 69.76 — 68.15 -1.61 0.98E9 (46.1%) 6.19E9 (47.1%)
SSS-32 [22] 76.10 — 74.18 -1.92 2.82E9 (31.1%) 18.60E9 (27.3%)
Taylor-81 [19] 76.18 — 75.48 -0.70 2.66E9 (34.9%) 17.90E6 (30.1%)
SFP [14] 76.15 — 74.61 -1.54 2.38E9 (41.8%) -
FPGM-30 [12] 76.15 — 75.59 -0.56 2.36E9 (42.2%) -
GAL-0.5 [23] 76.15 — 71.95 -4.20 2.33E9 (43.1%) 21.20E6(17.2%)
LeGR [13] 76.10 — 75.70 -0.40 2.37E9 (42.0%) -
DI-SD(Ours) 76.10 — 76.10 0 2.31E9 (43.5%) 16.70E6 (34.8%)
ResNet50 Sampling [42] 76.13 — 75.21 -0.92 2.86E9 (30.1%) 14.33E6 (44.0%)
Hrank [11] 76.15 — 74.98 -1.17 2.30E9 (43.8%) 16.15E6 (36.9%)
Taylor-72 [19] 76.18 — 74.50 -1.68 2.25E9 (45.0%) 14.20E6 (44.5%)
FPGM-40 [12] 76.15 — 74.83 -1.32 1.90E9 (53.5%) -
C-SGD-50 [50] 75.34 — 74.54 -0.80 1.82E9 (55.8%) -
ThiNet-50 [27] 72.88 — 71.01 -1.87 1.82E9 (55.8%) 12.40E6(51.6%)
DCP [10] 76.10 — 74.95 -1.15 1.82E9(55.8%) 12.40M (51.6%)
DI-unif(Ours) 76.10 — 75.50 -0.60 1.77E9 (56.7%) 12.10E6 (52.7%)
DCP [10] 70.11% — 64.22% -5.89% 1.65E8 (45%) 2.57E6 (25.9%)
MobileNetV?2 CPLI [29] 72.19% — 67.35% -4.84% 1.65E8 (45%) 2.57E6 (25.9%)
DI-unif(Ours) 71.80% — 69.33% -2.47 % 1.50E8 (50%) 1.92E6 (44.7%)




Performance Evaluation (Cont.)

o Quantization results of compression ResNet50 on ImageNet

TABLE IV
COMPARISON OF DIFFERENT QUANTIZATION METHODS FOR COMPRESSING
RESNETS0 ON IMAGENET.

Method Precision Model Size  Top-1 Top-5
ResNet50 float 32-bit 9749 MB  76.10% 92.93%
DC [52] fixed 2-bit 6.32 MB  69.85% 88.68%

FSNet-WQ [53] fixed 8-bit ~8.37 MB 69.87% 89.61%
HAQ [4] inter-layer mixed 6.30 MB  70.63% 89.93%
Ours intra-layer mixed 6.09 MB  73.21% 91.27%

o Practical latency speedup

Table 11: Actual inference time speedup of pruned models on ImageNet. We measure on PyTorch
platform with single NVIDIA P100 GPU using batch-size 64.

Model Method Top-1 Runtime  Latencyl

Baseline 69.76% 14.41ms -
DI-unif 68.15% 10.52ms 27%
Baseline 76.10%  49.97ms -
DI-unif  75.50% 30.98ms 38%
Baseline 71.80%  30.50ms -
DI-unif 69.33% 16.86ms 45%

ResNetl8

ResNet50

MobileNetV?2
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Summary

A feature-map discriminant perspective for feature-map pruning in deep neural networks
Theoretical guidelines to effectively quantify the feature-map discriminant power

An intra-layer mixed precision quantization scheme to further compress the network based on the
same metric

Dl-based greedy pruning algorithm to automatically decides the target pruned architecture
Experiments on various CNN architectures and benchmarks validates the effectiveness of our

method



