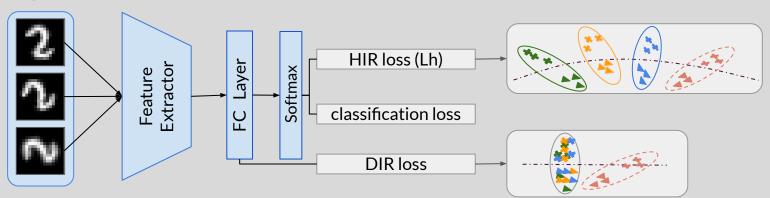

Respecting Domain Relations: Hypothesis Invariance for Domain Generalization

Ziqi Wang, Marco Loog, Jan van Gemert



Domain Generalization

- Supervised learning
- Multiple non-i.i.d. Domains
- Target domain is unavailable


DIR & HIR

$$P_{Z|D} = P_Z, \quad P_{Z|Y,D} = P_{Z|Y}, \quad P_{Y|Z,D} = \frac{P_{Z|Y,D}P_{Y|D}}{P_{Z|D}}.$$
 $\forall D \in \mathcal{D}.$

$$\underset{Y}{\operatorname{arg\,max}} P_{Y|Z,D} = \underset{Y}{\operatorname{arg\,max}} P_{Y|Z},$$
$$\forall D \in \mathcal{D}.$$

Experiments & Results

	Methods	\mathcal{M}_{0°	\mathcal{M}_{15°	\mathcal{M}_{30°	\mathcal{M}_{45°	\mathcal{M}_{60°	\mathcal{M}_{75°	Avg.
prior	LG	89.7	97.8	98.0	97.1	96.6	92.1	95.3
knowledge	DIVA	93.5	99.3	99.1	99.2	99.3	93.0	97.2
no	D-MTAE	82.5	96.3	93.4	78.6	94.2	80.5	87.5
prior	CCSA	84.6	95.6	94.6	82.9	94.8	82.1	89.1
knowledge	MMD-AAE	83.7	96.9	95.7	85.2	95.9	81.2	89.8
	DA	86.7	98.0	97.8	97.4	96.9	89.1	94.3
	HEX	90.1	98.9	98.9	98.8	98.3	90.0	95.8
	AGG	89.87	99.41	98.98	95.14	98.63	91.13	95.5
Ours	HIR	90.34 ± 0.88	99.75 ± 0.18	99.40 ± 0.21	96.17 ± 0.71	99.25 ± 0.26	91.26 ± 0.66	96.0

$$L_h = \sum_{i=1}^n \sum_{j=i+1}^n \sum_{c=1}^m P(\hat{Y}_i | Z_i, Y_i = c) \cdot \log(\frac{P(\hat{Y}_i | Z_i, Y_i = c)}{P(\hat{Y}_j | Z_j, Y_j = c)})$$

Domains	D-MTAE	CIDDG	DBADG	MMD-AAE	MLDG	Epi-FCR	CCSA	AGG	HIR
V	63.90	64.38	69.99	67.70	67.7	67.1	67.10	65.4	69.10 ± 1.8
L	60.13	63.06	63.49	62.60	61.3	64.3	62.10	60.6	62.22 ± 1.7
C	89.05	88.83	93.63	94.40	94.4	94.1	92.30	93.1	95.39 ± 0.9
S	61.33	62.10	61.32	64.40	65.9	65.9	59.10	65.8	65.71 ± 1.6
Avg	68.60	69.59	72.11	72.28	72.3	72.9	70.15	71.2	73.10

Conclusions and take away

- Learning domain invariant representations is unnecessarily strict
- Invariance learning may lead to overfit or discarding too much information
- Domain adaptation approaches cannot be applied on domain generalization directly