COQNN:

Convolutional Quadratic Neural Networks

Pranav Mantini* & Shishir K. Shah

University of Houston, Department of Computer Science

xpmantinildcs.uh.edu

Abstract

Image classification is a fundamental task in computer vision. A variety of deep learning models based on the
Convolutional Neural Network (CNN) architecture have proven to be an efficient solution. Numerous improve-
ments have been proposed over the years, where broader, deeper, and denser networks have been constructed.
However, the atomic operation for these models has remained a linear unit (single neuron). In this work, we pursue
an alternative dimension by hypothesizing the atomic operation to be performed by a quadratic unit. We construct
convolutional layers using quadratic neurons for feature extraction and subsequently use dense layers for classifi-
cation. We perform analysis to quantify the implication of replacing linear neurons with quadratic units. Results
show a keen improvement in classification accuracy with quadratic neurons over linear neurons.

Introduction

A variety of deep learning models have gained popularity for classification and recognition:
AlexNet [5], VGGNet [6], DenseNet [4], GoogleNet [7], and ResNet [3]. These models use a Con-
volutional Neural Network (CNN) at the core. The atomic operation for these models has remained
a linear unit. In this work, we pursue an alternative dimension by hypothesizing the atomic operation
to be performed by a quadratic unit.

Main Objectives

e We propose Convolutional Quadratic neural networks (CQNN) for representation learning and
demonstrate its application for image classification.

e We implement popular image classification architectures that consist of convolutional layers with
quadratic neurons as processing units.

e We compare the image classification performance of the CQNN version against the existing archi-
tectures.

Convolutional Quadratic Neural Networks

Let X' = {z, 9, ..., z;} be the input vector with d dimensions, where {}' is the transpose. A neuron
performing a linear function is represented as

f(X)=WX +b, (1)

where W = {wy, w9, .., wy} are the weights and b is the bias. A generalized quadratic functions for a
neuron can be defined as.

g(X) = Xx"Tw,x, 2)

where X! = {X1|1} = {z, z9, ..., x4, 1} is the augmented vector, and
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are the weights. Equation 2 1s mathematically equivalent to the quadratic neuron defined in [2].

CQNN:

We propose to use quadratic neurons for representation learning rather than for classification. The
1dea 1s to use quadratic neurons for image representation learning and subsequently use linear neu-
rons for classification. We build networks with a combination of quadratic and linear neurons for
1image classification where the convolutions layers used for extracting image representation are con-
structed using quadratic neurons, and the dense layers used in classification at the latter stages use
linear neurons. Let / be an image and consider a filter of size NV X /V used in the convolutional layer
of CNNs. Let X Z} = {x1, 29, ..., x 52} be the pixels in the receptive field of the image spanned by the

kernel at location (7, 7). Then the output of the quadratic neuron is computed as

q(Xij) = X[ WX 5. (4)

Experimental Design

We design experiments to quantify the capacity of CQNNSs to perform image classification and com-
pare them with CNNs. We consider AlexNet and ResNet as base architectures and construct CQNN's
with similar.

1. CQNN (Proposed): The neurons 1n the convolutional layer are replaced with quadratic neurons.

2. CQNNFan: Fan et al. [ 1] proposed a quadratic neuron for neural networks. We build CQNN using
this neural function.

f(z) = (W1 X +b1)(WoX +by) + (W3X + b3) (5)

3. Bilinear Networks (B1ICNNs): The bilinear implementation consists of two parallel networks con-
sisting of only convolutional layers. The features extracted from the networks are used to compute
an outer product.

4. Horizontally Scaled Networks (HSCNNs): We scale each CNN horizontally (i.e. 1increase the
number of filters) to create horizontally scaled versions, such that they have the same number of
parameters as the CQNN versions.

Datasets: We conduct experiments on two 1mage classification datasets, Cifar-10 and Citar-100.
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Figure 1: Training Accuracy on Cifar-10 dataset: (a) AlexNet variants; (c) ResNet variants; and Cifar-100 dataset: (b)
AlexNet variants; (d) ResNet variants

Dataset Model Parameters  Accuracy

Cifar - 10 | AlexNet 1.2M 0.63
AlexNet HSCNN 32.2M | 0.88
AlexNet BICNN 53.2M 0.79
AlexNet CQNNFan 2.2M 0.87
AlexNet CQNN 31.4M  0.88
ResNet 2M 0.85
ResNet HSCNN 130.6M | 0.87
ResNet BiICNN 0.5M 0.84
ResNet CQNNFan 0.8M|0.84
ResNet CQNN 128M | 0.91

Cifar - 100 | AlexNet 1.2M 041
AlexNet HSCNNSs 32.2M 0.56
AlexNet BICNN 64M 0.41
AlexNet CQNNFan 2.3M 0.58
AlexNet Quadratic 31.4M10.63
ResNet 2M 0.60
ResNet HSCNN 130.8M0.59
ResNet BiCNN 0.9M 0.51
ResNet CQNNFan 0.8M 0.55
ResNet CQNN 128M | 0.66

Figure 2: Testing accuracy of Existing architectures on Cifar-100 dataset.

Conclusions

e Training Behavior: Quadratic version shows a clear improvement in the training accuracy on both
the datasets.

e Testing Accuracy: CQNN AlexNet versions show a 25% increase 1n the accuracy on Cifar-10 and
22% on Cifar-100. item The ResNet CQNN version shows a 6% improvement in accuracy on both
the datasets.

e Experiments on two public datasets, Cifar-10 and Cifar-100 show a clear improvement in training
behavior and testing accuracy compared to conventional CNN architecture.
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