Improving Robotic Grasping on **Monocular Images Via Multi-Task** Learning and Positional Loss

William Prew^{1,2}, Toby Breckon¹, Magnus Bordewich¹, and Ulrik Beierholm²

Department of Computer Science¹ & Psychology² **Durham Universitv**

Example grasps and disparity maps from MTG-CNN

Results

All networks are trained and evaluated on the Jacquard grasping dataset [3].

The average performance of each model during training with and without the positional loss function included during training.

TABLE I

THE MEAN PERCENTAGE OF CORRECT GRASPS FOR EACH NETWORK EVALUATED ON THE JACQUARD GRASPING DATASET.

Model	Auxiliary Task	Successful Grasps
GG-CNN		$72.04\% \pm 3.44$
$GG-CNN_p$		$78.92\% \pm 0.97$
MTG-CNN	Saliency	$74.93\% \pm 1.86$
$MTG-CNN_p$	Saliency	$76.23\% \pm 2.75$
MTG-CNN	Depth	$78.14\% \pm 0.65$
$MTG-CNN_p$	Depth	$79.12\% \pm 1.40$

Conclusions

- Learning associated concurrent tasks improves grasping performance on the Jacquard dataset.
- The positional loss function also slightly improves grasp performance but also encourages faster learning in the earlier epochs of training.

References

[1] Ruder, S. (2017). An Overview of Multi-Task Learning in Deep Neural Networks. ArXiv. Retrieved from http://arxiv.org/abs/1706.05098 [2] Morrison, D., Corke, P., & Leitner, J. (2020). Learning robust, real-time, reactive robotic grasping. International Journal of Robotics Research, 39(2-3), [3] Depierre, A., Dellandrea, E., & Chen, L. (2018). Jacquard: A Large Scale Dataset for Robotic Grasp Detection. In IEEE International Conference on Intelligent Robots and Systems (pp. 3511-3516).

Introduction

Robotic grasping, like many data-driven challenges, has recently applied machine learning to generate accurate grasp plans.

Learning similar concurrent tasks during training has been shown to improve performance on a primary task [1].

Multi-Task Grasping Convolutional Neural Network (MTG-CNN)

Shares backbone architecture with the Generative Grasping Convolutional Neural Network (GG-CNN) [2]

Gripper Width(W)

Positional Loss

We also introduce a new loss function which we term the **positional loss**, referenced by subscript *p*.

$$L_p = \frac{1}{N} \sum (Q_\theta - Q_{GT})^2 + \frac{1}{N} \sum (Q_{GT} (\Phi_\theta^{sin} - \Phi_{GT}^{sin}))^2 + \frac{1}{N} \sum (Q_{GT} (\Phi_\theta^{cos} - \Phi_{GT}^{cos}))^2 + \frac{1}{N} \sum (Q_{GT} (W_\theta - W_{GT}))^2$$

The typical MSE loss of the grasp, represented by grasp position (Q), angle (ϕ^{sin}/ϕ^{cos}) and gripper width (W), is scaled by per pixel grasp position ground truth (Q_{GT}) .