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Introduction

Robotic grasping, like many data-driven challenges,
has recently applied machine learning to generate
accurate grasp plans.

Learning similar concurrent tasks during training has
been shown to improve performance on a primary
task [1].

Multi-Task Grasping Convolutional Neural
Network (MTG-CNN)

Shares backbone architecture with the Generative
Grasping Convolutional Neural Network (GG-CNN) [2]
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Positional Loss

We also introduce a new loss function which we term
the positional loss, referenced by subscript p.

The typical MSE loss of
the grasp, represented
by grasp position (Q),
angle (¢5"/¢¢°%) and
gripper width (W), is
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Results

All networks are trained and evaluated on the Jacquard
grasping dataset [3].
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The average performance of each model during training
with and without the positional loss function included
during training.

TABLE I

THE MEAN PERCENTAGE OF CORRECT GRASPS FOR EACH NETWORK
EVALUATED ON THE JACQUARD GRASPING DATASET.

Model Auxiliary Task  Successful Grasps
GG-CNN 72.04% £ 3.44
GG-CNN,, 78.92% £ 0.97
MTG-CNN Saliency 74.93% £ 1.86
MTG-CNN,, Saliency 76.23% £ 2.75
MTG-CNN Depth 78.14% =+ 0.65

MTG-CNNyp Depth 79.12% + 1.40

Conclusions

* Learning associated concurrent tasks improves
grasping performance on the Jacquard dataset.

* The positional loss function also slightly improves
grasp performance but also encourages faster
learning in the earlier epochs of training.
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