

# **Collaborative Human Machine Attention Module** for Character Recognition



## Chetan Ralekar<sup>\*1</sup>, Tapan Kumar Gandhi<sup>1</sup>, Santanu Chaudhury<sup>1,2</sup>

<sup>1</sup>Department of Electrical Engineering, IIT Delhi, India <sup>2</sup>Department of Computer Science and Engineering, IIT Jodhpur, India

#### **INTRODUCTION:**

- · Convolutional neural networks (CNNs) have achieved impressive performance on various vision tasks.
- Performance improvement through depth. width. cardinality and attention mechanism
- Attention mechanism tells 'where to focus'
- · Most of the works consider 'Attention a pure machine vision optimization problem'

Fixation

Cross

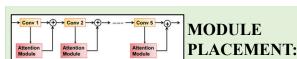
· Visual attention remains a neglected aspect

### **EXPERIMENTAL DETAILS:**



Experiment

Stimuli: अकगजतद


**1**s **Experiment Protocol** 

#### **ABLATION EXPERIMENTS:**

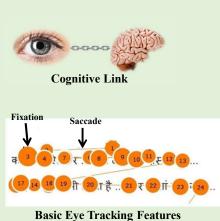
रवह समन

|                                                     | Table I: Spatial attention |            |                                          |                                  |   |                 |    |  |  |  |
|-----------------------------------------------------|----------------------------|------------|------------------------------------------|----------------------------------|---|-----------------|----|--|--|--|
|                                                     | Si<br>N                    | r.<br>'o.  | Ne                                       | twork                            |   | Test Accura     | cy |  |  |  |
|                                                     | 1                          |            | Ba                                       | seline (AlexNet)                 |   | 80.08           |    |  |  |  |
|                                                     | 2                          |            | Spatial attention using<br>Average Pool  |                                  |   | 82.77           |    |  |  |  |
| 3                                                   |                            | -r         |                                          | atial attention using<br>ax Pool |   | 82.05           |    |  |  |  |
|                                                     | 4                          |            | Concatenation of Max<br>and Average Pool |                                  |   | 83.61           |    |  |  |  |
| Table II: Combining spatial and visual attention ma |                            |            |                                          |                                  |   |                 |    |  |  |  |
|                                                     |                            | Sr.<br>No. |                                          | Network                          |   | èst<br>Accuracy |    |  |  |  |
|                                                     |                            | 1          |                                          | Baseline (AlexNet)               | 8 | 0.08            |    |  |  |  |
|                                                     |                            | 2          |                                          | Element wise<br>summation        | 8 | 3.61            |    |  |  |  |
|                                                     |                            | 3          |                                          | Element wise                     | 8 | 2.91            |    |  |  |  |

Multiplication



Visual attention


map

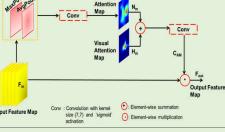
#### **COMPARATIVE ANALYSIS:**

| Sr. No. | Network                                        | Test<br>Accuracy |
|---------|------------------------------------------------|------------------|
| 1       | Baseline (AlexNet)                             | 80.08            |
| 2       | DeepSupervision (ICDARW-19<br>[1])             | 82.05            |
| 3       | Fusion all layers (inspired by SonoEyeNet [2]) | 68.71            |
| 4       | Late fusion (SonoEyeNet [2])                   | 78.15            |
| 5       | Proposed Module                                | 83.61            |

Acknowledgement: Our sincere thanks to all the participants who participated in the study. We would also like to thank the Visvesvaraya PhD Scheme/DIC/Meity for providing financial assistance to first author (Unique Award Number: MEITY-PHD-589)

# **EYE TRACKING:**




#### **PROPOSED MODULE:**



Need for foveal and para-foveal regions for recognition



Visualization map



regions

**Eve Tracker** 

information processing by Brain

· Eye fixation a measure of

Fixations indicate selective

attention on different image

Schematic of Collaborative Human-Machine Attention Module

#### **CONCLUSIONS:**

- Collaborative Human-Machine attention module decides 'where' to focus
- The visual attention map covers image regions focused by humans and spatial attention maps spans other relevant regions
- The combination of visual and spatial attention maps bring finer refinement in feature maps
- The proposed module can be integrated with any CNN architecture

#### **References:**

- Ralekar, Chetan, et al. "Intelligent Identification of Ornamental Devanagari Characters Inspired by Visual Fixations." 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW).
- Vol. 5. IEEE, 2019. Cai, Vifan, et al. "SonoEyeNet: Standardized fetal ultrasound plane detection informed by eve tracking." 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Communications of the ACM 60.6 (2017): 84-90.

\*Chetan Ralekar (chetan.ralekar@gmail.com)

25<sup>th</sup> International Conference on Pattern Recognition Milan, Italy 10 | 15 January 2021

