Multi-view Object Detection Using Epipolar Constraints within Cluttered X-Ray Security Imagery

Brian K. S. Isaac-Medina*, Chris G. Willcocks*, Toby P. Breckon*[†] Department of {*Computer Science, [†]Engineering}, Durham University, UK

Issue: the use of information from multiple views in X-ray security object detection

Approach: epipolar constraints are imposed to improve object detection in uncalibrated multi-view X-ray baggage imagery (i - iv).

(i) Fundamental matrix is estimated using ground truth object-level bounding box centroids as point correspondences.

The fundamental matrix is estimated by taking the bounding box centroids as approximations to real correspondences

(ii) Detection distance to the epipolar line. Given a detection \mathcal{B} in one view, the distance d' of the centroid \mathbf{x}' of \mathcal{B}' in the second view is modeled as $d'(\mathbf{x}', \mathbf{l}') \sim \mathcal{N}(\mu_{d'}, \sigma_{d'}^2)$.

(iii) Epipolar detection confidence. The distance to the epipolar line is used to get an epipolar detection confidence.

An epipolar confidence is given to a detection by the distance of its centroid to the epipolar line

(iv) Multi-view Filtering. The detection confidence is multiplied by p(d') and filtered by a threshold before Non Maximum Suppression (NMS). 25th International Conference on Pattern Recognition (ICPR 2020) – Jan 2021

Multi-view object detection: 1. Single-view detections 2. Epipolar lines are obtained for each detection 3. Multi-view filtering 4. NMS.

Results

- Detector: YOLOv3^[1]. Metric: MS COCO^[2].
- AP increased +2.2% and AP $_{0.5}$ increased +2.8%, without affecting the recall.

• Precision improvement is due to elimination of false positives.

								•		
Category	Method	AP	AP _{0.5}	APs	АРм	AP∟	AR ₁₀	ARs	AR _M	AR∟
Firearm	SV	0.670	0.983	-	0.681	0.630	0.747	-	0.744	0.776
	MV	0.691	0.988	-	0.702	0.679	0.749	-	0.747	0.775
Laptop	SV	0.705	0.972	-	-	0.705	0.772	-	-	0.772
	MV	0.697	0.973	-	-	0.697	0.766	-	-	0.766
Knife	SV	0.320	0.726	0.083	0.349	0.175	0.447	0.112	0.464	0.263
	MV	0.382	0.800	0.125	0.412	0.138	0.463	0.154	0.478	0.287
Camera	SV	0.530	0.848	-	0.700	0.530	0.605	-	0.700	0.605
	MV	0.546	0.881	-	0.700	0.546	0.603	-	0.700	0.602
All	SV	0.557	0.882	0.083	0.577	0.510	0.643	0.112	0.636	0.604
	MV	0.579	0.910	0.125	0.605	0.515	0.645	0.154	0.641	0.608
Multi-view object detection MS COCO ^[2] metrics										

Ground Truth

Multi view detection

Comparison between single-view and multi-view detection. Our multiview filtering approach removes false positives in complex scenes.

Conclusions

- Fundamental matrix estimation using bounding box centroids.
 - Epipolar confidence reduces false positives.
 - Improved benchmark against single-view
 - AP increased +2.2% and AP_{0.5} increased +2.8%
 - Recall was unaffected

 J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only look once: Unified, real-time object detection," in *CVPR* 2016, pp. 779-788.
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.Ramanan, P. Dollar, and C.L. Zitnick, Visco 2014, 2014

[2] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.Ramanan, P. Dollar, and C.L. Zitnick, "Equationft COCO: Common objects in context," in ECCV. Springer, 2014, pp. 740-755.