
Fast Implementation of 4-bit Convolutional
Neural Networks for Mobile Devices
Anton Trusov1,3, Elena Limonova1,2,3, Dmitry Slugin2,3, Dmitry Nikolaev2,3,4,
Vladimir V. Arlazarov2,3
1 Moscow Institute of Physics and Technology
2 FRC CSC RAS

3 Smart Engines Service LLC
4 Institute for Information Transmission Problems RAS

1. Introduction
Low-bit quantized neural networks (QNNs) al-
low us to:

• accelerate inference;

• decrease model size;

• perform real-time computation on low-
powered devices;

• follow paradigm of edge intelligence.

2. Problem
However, low-bit QNNs do not suit end devices
of general architecture well:

• CPUs allow only 8-bit (or multiple) access and
computations;

• no efficient CPU implementations for lower
than 8-bit quantization.

3. Our contribution
• We provide a novel algorithm for fast infer-

ence of 4-bit quantized neural network on
CPU, based on a fast multiplication (used in
convolution and fully-connected layers).

• We experimentally prove its efficiency for
ARM architecture.

4. Quantization scheme
Linear quantization method:

ŵi =
⌊wi

s

⌋
− z

s = max(maxi wi, 0)−min(mini wi, 0)
2p − 1

z = min(min
i

wi, 0),

where ŵi denotes quantized values, wi are floating-
point values, s is scale factor, z is a zero-point (off-
set), p is a number of bits used in quantized values

5. Quantized multiplication
Let’s consider the quantized approximation of
matrix multiplication R = WX:

rij =
D∑

k=1
wikxkj

≈
D∑

k=1
sw(ŵik − zw)sx(x̂kj − zx)

= swsx

(D∑
k=1

ŵikx̂kj − zw

D∑
k=1

x̂kj−

− zx

D∑
k=1

ŵik + Dzxzw

)
where rij denotes values of R matrix, wik and
xkj are values of W and X matrices, ŵik and
ŵik are their quantized approximations, sw and
sx are scale factors, zw and zx are zero-points
and D is a depth of multiplication.

6. Reordering
RHS

Figure 1: The order or values of right temporal
buffer.

LHS

Figure 2: The order or values of left temporal
buffer.

7. Multiplication micro-kernel
lhs are 128-bit SIMD registers with 16 4-bit
quantized values (zero padded to 8-bit).
rhs are 64-bit SIMD registers with 8 4-bit quan-
tized values (zero padded to 8-bit).
res are 128-bit SIMD registers with 8 16-bit
quantized values.

Figure 3: The smaller micro-kernel.

Figure 4: The bigger micro-kernel.

8. Multiplication Algorithm
pack right matrix into RHS
pack left matrix into LHS
for j in 0, ..., cols / nr

{res0 ... res3} ← next result block
for i in 0, ..., rows / mr

for k in 0, ..., depth / 2
lhs ← next block from LHS
rhs ← next block from RHS
VMAL(dst0, LOW(lhs), rhs[0]);
VMAL(dst0, HIGH(lhs), rhs[1]);

...
VMAL(dst3, LOW(lhs), rhs[6]);
VMAL(dst3, HIGH(lhs), rhs[7]);

result block ← {res0 ... res3}

9. Quantized convolutional layer
• Perform Im2col transformation to turn convo-
lution into matrix multiplication.

• Compute matrix multiplication:

r̂ij =
D∑

k=1
ŵikx̂kj − zw

D∑
k=1

x̂kj − zx

D∑
k=1

ŵik+

+ Dzxzw,

• Save floating-point scale factor: sr = swsx

10. Experiments
• 36 MRZ character recognition from MIDV-500

dataset
• ODROID-XU4 single-board computer with Sam-

sung Exynos5422 ARM processor

Table 1: The network architecture, where F is a
number of filters.

Layer F Filter size Stride
Conv + ReLU 8 5 × 5 1 × 1
Conv + ReLU 8 3 × 3 1 × 1
Conv + ReLU 8 3 × 3 2 × 2
Conv + ReLU 16 3 × 3 1 × 1
Conv + ReLU 16 3 × 3 2 × 2
Conv + ReLU 24 3 × 3 1 × 1
FC + SoftMax 36 neurons

Table 2: Accuracy on synthetic data (AS), accu-
racy on MIDV-500 (AM), convolution inference time
(Tc) and full interence time (T) evaluation.

Model AC, % AM, % Tc, ms T , ms
CNN 99.8 95.6 0.99 1.22
QNN-8 99.7 95.4 0.55 0.74
QNN-4 99.2 95.0 0.45 0.63
QNN-32 - - 1.16 1.47

11. Results
• Our 4-bit quantized matrix multiplication
works about 3 times faster than floating-
point multiplication from Eigen library and
1.5 times faster than 8-bit quantized multipli-
cation similar to gemmlowp library

• Our 4-bit QNN works about 2 times faster
than traditional CNN and 1.2 times faster
than 8-bit QNN of the same architecture.

• The real-world problem of OCR recognition
on the MIDV-500 dataset demonstrates 95.0%
accuracy, while the floating-point network
gives 95.6% accuracy.

