Fast Implementation of 4-bit Convolutional **Neural Networks for Mobile Devices**

Anton Trusov^{1,3}, Elena Limonova^{1,2,3}, Dmitry Slugin^{2,3}, Dmitry Nikolaev^{2,3,4}, Vladimir V. Arlazarov^{2,3}

¹ Moscow Institute of Physics and Technology ² FRC CSC RAS

1. Introduction

Low-bit quantized neural networks (QNNs) allow us to:

- accelerate inference;
- decrease model size;
- perform real-time computation on lowpowered devices;
- follow paradigm of edge intelligence.

³ Smart Engines Service LLC ⁴ Institute for Information Transmission Problems RAS

\mathbf{RHS}	6. Reordering				
	RHS				
1 3 5 7	1				
2 4 6 8	•				
9 11 13 15	•				
10 12 14 16					

Figure 1: The order or values of right temporal buffer.

8. 1	Multipl	lication	Algo	rithm
------	---------	----------	------	-------

pack right matrix into RHS pack left matrix into LHS for j in 0, ..., cols / nr {res0 ... res3} \leftarrow next result block for i in 0, ..., rows / mr for k in 0, ..., depth / 2 $lhs \leftarrow next block from LHS$ $rhs \leftarrow next block from RHS$ VMAL(dst0, LOW(lhs), rhs[0]); VMAL(dst0, HIGH(lhs), rhs[1]);

2. Problem

- However, low-bit QNNs do not suit end devices of general architecture well:
- CPUs allow only 8-bit (or multiple) access and computations;
- no efficient CPU implementations for lower than 8-bit quantization.

3. Our contribution

- We provide a novel algorithm for fast inference of 4-bit quantized neural network on CPU, based on a fast multiplication (used in convolution and fully-connected layers).
- We experimentally prove its efficiency for ARM architecture.

	μ	
Ш		•

LHS					
	1	9	17	25	
	2	10	18	26	
	3	11	19	27	
	4	12	20	28	
	5	13	21	29	
	6	14	22	30	
	7	15	23	31	
	8	16	24	32	

Figure 2: The order or values of left temporal buffer.

7. Multiplication micro-kernel

lhs are 128-bit SIMD registers with 16 4-bit quantized values (zero padded to 8-bit). *rhs* are 64-bit SIMD registers with 8 4-bit quantized values (zero padded to 8-bit). res are 128-bit SIMD registers with 8 16-bit

VMAL(dst3, LOW(lhs), rhs[6]); VMAL(dst3, HIGH(lhs), rhs[7]); result block \leftarrow {res0 ... res3}

9. Quantized convolutional layer

- Perform Im2col transformation to turn convolution into matrix multiplication.
- Compute matrix multiplication: $\hat{r}_{ij} = \sum_{k=1}^{\infty} \hat{w}_{ik} \hat{x}_{kj} - z_w \sum_{k=1}^{\infty} \hat{x}_{kj} - z_x \sum_{k=1}^{\infty} \hat{w}_{ik} + \frac{1}{2} \hat{w}_{ik} \hat{x}_{kj} - z_w \sum_{k=1}^{\infty} \hat{w}_{ik} - z_w \sum_{k=1}^{\infty} \hat{w}_{$ $+Dz_{x}z_{w},$
- Save floating-point scale factor: $s_r = s_w s_x$

10. Experiments

• 36 MRZ character recognition from MIDV-500 dataset

4. Quantization scheme

Linear quantization method:

$$\hat{w}_i = \left\lfloor \frac{w_i}{s} \right\rfloor - z$$

$$s = \frac{\max(\max_i w_i, 0) - \min(\min_i w_i, 0)}{2^p - 1}$$

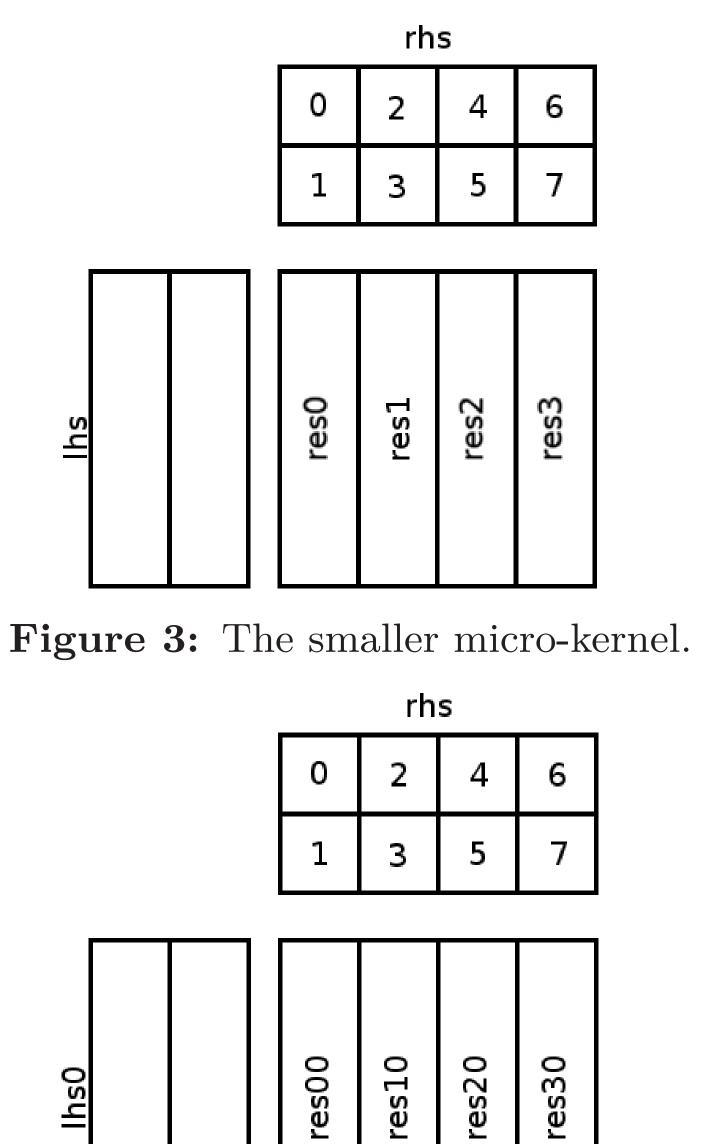
$$z = \min(\min_i w_i, 0),$$

where \hat{w}_i denotes quantized values, w_i are floatingpoint values, s is scale factor, z is a zero-point (offset), p is a number of bits used in quantized values

5. Quantized multiplication

Let's consider the quantized approximation of matrix multiplication R = WX:

quantized values.



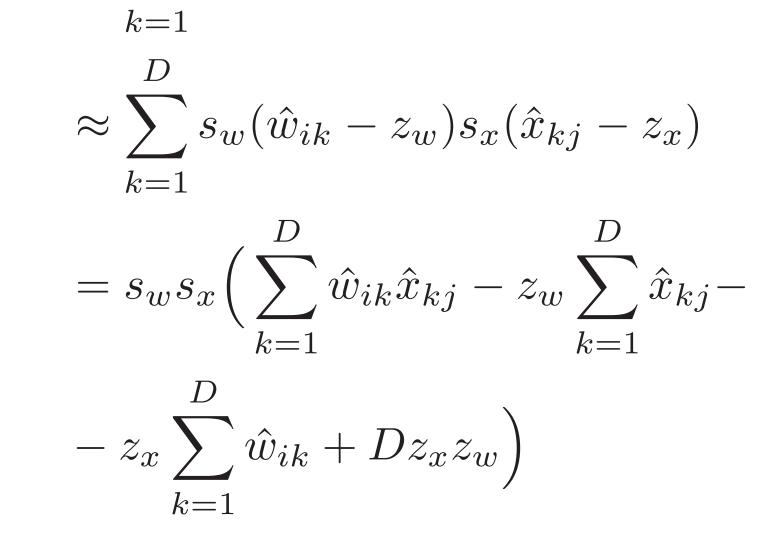
• ODROID-XU4 single-board computer with Samsung Exynos5422 ARM processor

Table 1: The network architecture, where F is a number of filters.

Layer	F	Filter size	Stride
Conv + ReLU	8	5×5	1×1
Conv + ReLU	8	3×3	1×1
Conv + ReLU	8	3×3	2×2
Conv + ReLU	16	3×3	1×1
Conv + ReLU	16	3×3	2×2
Conv + ReLU	24	3×3	1×1
FC + SoftMax	36 neurons		

Table 2: Accuracy on synthetic data (AS), accuracy on MIDV-500 (AM), convolution inference time (T_c) and full interence time (T) evaluation.

Model	$\mathbf{AC}, \%$	$\mathbf{AM},\ \%$	T_c , ms	T, ms
CNN	99.8	95.6	0.99	1.22
QNN-8	99.7	95.4	0.55	0.74
QNN-4	99.2	95.0	0.45	0.63
QNN-32	_	_	1.16	1.47
	1	1	1	



where r_{ij} denotes values of R matrix, w_{ik} and x_{kj} are values of W and X matrices, \hat{w}_{ik} and \hat{w}_{ik} are their quantized approximations, s_w and s_x are scale factors, z_w and z_x are zero-points and D is a depth of multiplication.

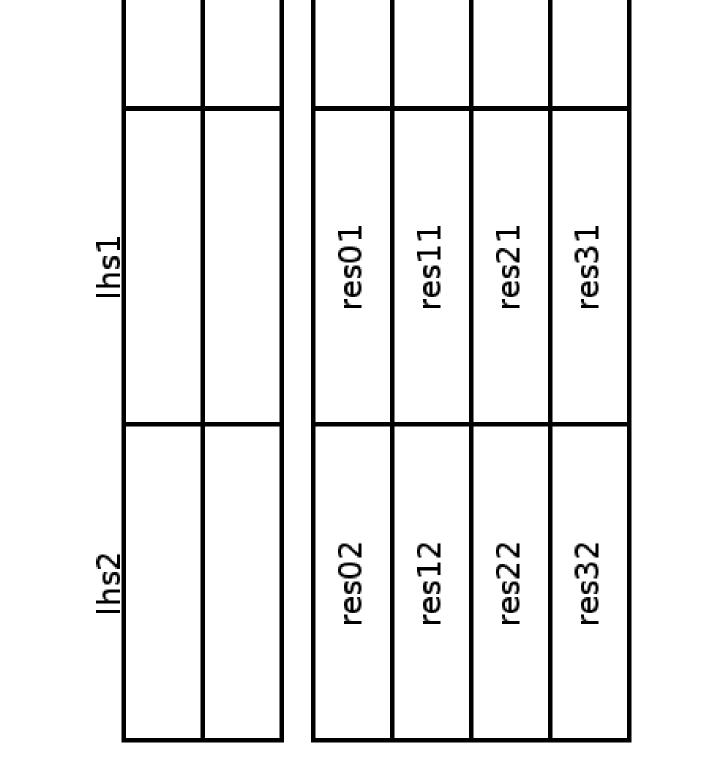


Figure 4: The bigger micro-kernel.

11. Results

• Our 4-bit quantized matrix multiplication works about 3 times faster than floatingpoint multiplication from Eigen library and 1.5 times faster than 8-bit quantized multiplication similar to gemmlow library

• Our 4-bit QNN works about 2 times faster than traditional CNN and 1.2 times faster than 8-bit QNN of the same architecture.

• The real-world problem of OCR recognition on the MIDV-500 dataset demonstrates 95.0%accuracy, while the floating-point network gives 95.6% accuracy.