Exploiting Non-Linear Redundancy for Neural Model Compression

Muhammad Ahmed Shah, Raphael Olivier, Bhiksha Raj

- Motivation and Background
- Method: Lossless Redundancy Elimination
- Evaluation and Results
- Analysis
- Conclusion

Overparameterized Models – The New Norm

Data from: https://paperswithcode.com/sota/image-classification-on-imagenet

Current Methods For Model Compression

- Structural Pruning
 - Remove structural units from the model
 - Does not rely on sparse matrix operations – operationally more efficient
 - Produces compact representations
 - Selection Criteria:
 - Heuristics magnitude of the unit's output
 - Regularization assign weights to filter, prune filters with low weights
 - Heuristics can be misleading

Current Methods For Model Compression

- Structural Pruning
 - For example two units have identical outputs and identical incoming and outgoing weights
 - Suppose they have sufficiently high activations (relative to the other units)
 - Both neurons will have an equal and significant impact on downstream outputs
 - Thus most magnitude-based heuristics would retain both neurons
 - Ideally, achieve lossless compression by removing one of the neurons and doubling the other neuron's outgoing weights

- Motivation and Background
- Method: Lossless Redundancy Elimination
- Evaluation and Results
- Analysis
- Conclusion

Lossless Redundancy Elimination

• Consider this network $y_1 = w_{11}z_1 + w_{12}z_2 + w_{13}z_3$ $y_2 = w_{21}z_1 + w_{22}z_2 + w_{23}z_3$

Lossless Redundancy Elimination

- Suppose $z_1 = \alpha z_2 + \beta z_3$
- In this case

$$y_1 = (w_{12} + \alpha w_{11})z_2 + (w_{13} + \beta w_{11})z_3$$

$$y_2 = (w_{22} + \alpha w_{21})z_2 + (w_{23} + \beta w_{21})z_3$$

Lossless Redundancy Elimination

- Suppose $z_1 = \alpha z_2 + \beta z_3$
- In this case

$$y_1 = (w_{12} + \alpha w_{11})z_2 + (w_{13} + \beta w_{11})z_3$$

$$y_2 = (w_{22} + \alpha w_{21})z_2 + (w_{23} + \beta w_{21})z_3$$

- We can remove z_1
- And readjust weights

•
$$w_{12} \leftarrow w_{12} + \alpha w_{11}$$
 $w_{13} \leftarrow w_{13} + \beta w_{11}$

• $w_{22} \leftarrow w_{22} + \alpha w_{21}$

$$w_{13} \leftarrow w_{13} + \beta w_{11}$$
$$w_{23} \leftarrow w_{23} + \beta w_{21}$$

LRE-AMC

- We modify an exiting technique called Annealed Model Contraction (AMC)
- We do the following to compress a single layer:
 - 1. Compute the predictability of the units (neurons/conv filters) using OLS regression
 - 2. Remove $\gamma\%$ of the most predictable units.
 - 3. Fine tune the network
 - 4. Measure the accuracy of the model and repeat if accuracy is recovered

```
1 RemoveAndAdjust(A, W, j): adjust the weight matrix after the removal of the
      j^{th} neuron
 2 Function LREShrink(F, l, \gamma):
           Z \leftarrow F_{1:l}(\mathcal{X}) / / compute the activations of the l^{th} layer.
          A \leftarrow \min_A ||ZA - Z||^2 s.t diag(A) = \mathbf{0}
 4
          \mathcal{E} \leftarrow \arg \operatorname{sort}(\|ZA - Z\|^2)[: |\gamma * \operatorname{sizeof}(F[l])|]
 5
          \bar{W}^{(l+1)} \leftarrow [W^{(l+1)}; b^{(l+1)}] / / Concatenate the weights and bias.
 6
          for j \in \mathcal{E} do
 7
               W^{(l)} \leftarrow W^{(l)}_{-i} // drop the j^{th} row of W^{(l)}
 8
               W^{(l+1)} \leftarrow \text{RemoveAndAdjust}(A, \bar{W}^{(l+1)}, j)
 9
10
          end
11 Acc \leftarrow evaluate(F_t)
12 F'_s[i_B] \leftarrow \text{LREShrink}(F_s, i_B, \gamma)
13 Acc' \leftarrow evaluate(F'_s)
14 while Acc - Acc' \leq \epsilon do
          F_s \leftarrow F'_s
15
          F'_s[i_B] \leftarrow \text{LREShrink}(F'_s, i_B, \gamma)
16
          Acc' \leftarrow \text{evaluate}(F'_s)
17
          if Acc - Acc' > \epsilon then
18
               F'_{e} \leftarrow \text{distill}(F'_{e})
19
               Acc' \leftarrow \text{evaluate}(F'_s)
\mathbf{20}
          \mathbf{end}
\mathbf{21}
22 end
```

- Motivation and Background
- Method: Lossless Redundancy Elimination
- Evaluation and Results
- Analysis
- Conclusion

Experimental Setup

- In each compression iteration we remove 25% of the neurons in the layer.
- We keep compressing as long as the validation accuracy does not deteriorate by more than ϵ %.

Results

- LRE-AMC can drastically shrink the model
- Effective on large/complex datasets as well like Image Net
- TD shrinking is more effective for param reduction
- RR shrinking is more effective for FLOP reduction
- Comparison with prior work:
 - Closest competitor [1] removes 4% fewer params but 5% more FLOPs
 - LRE-AMC preferable if memory is constrained.
- 1. L. Liebenwein +, "Provable filter pruning for efficient neural networks," 2019.
- 2. Z. Zhuang+, "Discrimination-aware channel pruning for deep neural networks," in NeurIPS 2018,
- 3. J.-H. Luo+, "Thinet: A filter level pruning method for deep neural network compression," ICCV, 2017,

Dataset	Param Reduction (%)	FLOP Reduction (%)	Accuracy Reduction (%)	ε
CIFAR10	97.4	80.2	1.8	0
CIFAR10-[1]	94.3	85.0	0.5	-
CIFAR10-[2]	93.6	65.0	0.6	-
CIFAR10-[3]	64.0	64.0	2.1	-
Caltech256	81.7	65.2	1.7	1
ImageNet	11.8	20.0	1.6	2
ImageNet	19.1	26.0	3.0	3

CF10 = CIFAR 10 CT256 = Caltech 256 IN=ImageNet

- Motivation and Background
- Method: Lossless Redundancy Elimination
- Evaluation and Results
- Analysis
- Conclusion

Effect of Weight Re-adjustment

- $\epsilon = 5\%$
- Improves param and FLOP reduction for Caltech-256
 - More complex data, fewer redundant neurons
- More beneficial under Top Down
 - Allows us to compress under low redundancy

Effect of Weight Re-adjustment

- Output of the final convolutional layer in VGG-16 on CIFAR10
- Weight readjustment separates classes more cleanly
 - Classes 1, 2, 7 and 8

•

Accuracy vs. Compression Trade Off

- Almost linear relationship between reduction in FLOPs and Accuracy
- Accuracy is more resistant to reduction in parameters
 - Accuracy does not depend on how many parameters are removed, rather which parameters are removed.

- Motivation and Background
- Method: Lossless Redundancy Elimination
- Evaluation and Results
- Analysis
- Conclusion

Conclusion

- We have presented LRE-AMC, a technique to identify and eliminate non-linear dependencies between neurons.
- LRE-AMC can remove more than 97% of the model parameters and 80% of the FLOPs from a VGG-16 trained on CIFAR-10
- Our analysis indicates that our weight adjustment technique, LRE, yields better compression and maintains the intermediate representations.

Thank You

Questions?