

# Boundary bagging to address training data issues in ensemble classification

Samia Boukir<sup>1</sup>, Wei Feng<sup>2</sup> sboukir@ipb.fr, wfeng@xidian.edu.cn



<sup>1</sup> Bordeaux INP, G&E Laboratory (EA 4592), F-33600 Pessac, France <sup>2</sup>Department of Remote Sensing Science and Technology, School of Electronic Engineering, Xidian University, Xian 710071, China

## OVERVIEW

This work proposes extended bagging algorithms to better handle noisy and multi-class imbalanced classification tasks. These algorithms upgrade the sampling procedure by taking benefit of the confidence in ensemble classification outcome. The underlying idea is that a bagging ensemble learning algorithm can achieve greater performance if it is allowed to choose the data from which it learns. The effectiveness of the proposed methods is demonstrated in performing classification on 10 various data sets.

## BOUNDARY BAGGING FOR IDENTIFICATION OF MISLABELLED TRAINING DATA

Algorithm 1 Boundary bagging for noise removal

Inputs: Whole training data set  $S_0$  of size N

Ensemble creation method E

- Base learning algorithm B
- Validation set V
- Percentage M of pruning at each iteration Initialize  $S = S_0$ , i = 0
- Create an ensemble classifier  $EB_i$  with S

Compute the margin value of each training instance repeat Evaluate  $EB_i$  on validation data set V and obtain error

rate  $Er_i$  of  $EB_i$ Remove M first highest margin instances that have been

misclassified to compose a new cleaner training set  $S_i$ Set training set S to  $S_i$ , i = i + 1

Create an ensemble classifier  $EB_i$  with S

**until** Size of S = 0

Output:

Best filtered training subset  $S^*$  which led to lowest error rate  $Er^*$  on V

#### Data

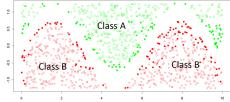
| Data set         | Training set | Test set | Variables | Classes |
|------------------|--------------|----------|-----------|---------|
| Abalone          | 2250         | 1500     | 8         | 3       |
| Glass            | 120          | 80       | 10        | 6       |
| Letter           | 7500         | 5000     | 16        | 26      |
| Optdigits        | 1500         | 1000     | 64        | 10      |
| Pendigit         | 3000         | 2000     | 16        | 10      |
| Segment          | 1200         | 800      | 19        | 7       |
| Texture          | 3000         | 2000     | 40        | 11      |
| Vehicle          | 300          | 200      | 18        | 4       |
| Waveform         | 3000         | 2000     | 21        | 3       |
| Wine quality-red | 900          | 600      | 11        | 6       |

Data sets from UCI Machine Learning repository

# Mislabelled data removal assessment

| Data      | No        | Majority | Boundary bagging filter |            |  |  |
|-----------|-----------|----------|-------------------------|------------|--|--|
| Data      | filtering | filter   | Max-margin              | Sum-margin |  |  |
| Abalone   | 54        | 54       | 54.5                    | 54.5       |  |  |
| Glass     | 97.5      | 97.5     | 97*                     | 96.5       |  |  |
| Letter    | 46.5      | 48       | 52.0                    | 57*        |  |  |
| Optdigit  | 89.5      | 91       | 93.5                    | 94*        |  |  |
| Pendigit  | 90.5      | 93.0     | 95.5                    | 95.5       |  |  |
| Segment   | 92        | 91       | 94                      | 95*        |  |  |
| Texture   | 86.5      | 89.5     | 91.5                    | 94*        |  |  |
| Vehicle   | 72        | 73.5     | 72.5                    | 73.0*      |  |  |
| Waveform  | 81.5      | 79.0     | 82.5*                   | 82         |  |  |
| Wine qua. | 60.5      | 60       | 60.5                    | 60.5       |  |  |

Classification accuracy of boosting with no filtering, with majority vote and with boundary bagging filtered training sets involving two well-known margins, in presence of 20% of random noise



Low margin instances (filled points) in data set Sin

## ABOUT BAGGING

The two key ingredients of bagging are bootstrap and aggregation. Bagging trains a number of base learners, each from a different bootstrap sample, to produce diversity. We proposed a variant of bagging, *boundary bagging*, which

upgrades the sampling procedure through the ensemble margin (Guo, Boukir and Aussem 2020). L.Guo, S.Boukir and A.Aussem, "Building bagging on critical instances," Expert Syster

vol. 37, no. 2, p. e12486, 2020

# BOUNDARY BAGGING FOR IMBALANCE SAMPLING

| A.1                            | <b>a b b b b c c c c b b c c c c c c c c c c</b>                              |
|--------------------------------|-------------------------------------------------------------------------------|
|                                | 2 Boundary bagging for imbalance sampling                                     |
| Inputs:                        |                                                                               |
|                                | training data set $S$ of size $N$                                             |
|                                | er of classes L                                                               |
|                                | ng data subset $S_i$ of size $N_i$ , $N_1 \leq N_i \leq N_L$ , $\forall$      |
| class i                        |                                                                               |
| Contraction of the Contraction | ble creation method $E$                                                       |
| Base lo                        | earning algorithm B                                                           |
|                                | ble size T                                                                    |
| Percen                         | tage $M_i$ of pruning $\forall$ class $i > 1$ : $M_i = \frac{N_i - N_1}{N_i}$ |
|                                | ing rate $\alpha$                                                             |
| Initialize                     |                                                                               |
| CONTRACTOR STATES              | an ensemble classifier $EB$ with $S$                                          |
|                                | ate the margin value of each training instance                                |
| repeat                         |                                                                               |
|                                | = 2  to  L                                                                    |
| Rem                            | hove $\alpha M_i$ first highest margin instances from sub-                    |
|                                | to compose a new subset $S_{ti}$                                              |
|                                | hove $(1 - \alpha)M_i$ instances sampled randomly from                        |
| subset                         |                                                                               |
| end                            |                                                                               |
| Create                         | a new balanced training set $S_t = S_{t1} \cup \ldots \cup S_{tL}$            |
|                                | a classifier $h_t = B(S_t)$                                                   |
|                                | e sampling rate $\alpha$                                                      |
| until $t =$                    |                                                                               |
| Fusion                         | of base classifiers $h_t, 1 \le t \le T$                                      |
|                                | ensemble classifier $EB_b$                                                    |
| Output                         |                                                                               |

Ensemble  $EB_b$ 

### Data

| Data             | Examples | Variables | Classes | $C_1$ | $C_2$ | $C_3$ | $C_4$ | $C_5$ | $C_6$ | $C_7$ | $C_8$ | $C_9$ | $C_{10}$ |
|------------------|----------|-----------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|
| Cleveland        | 297      | 13        | 5       | 160   | 54    | 35    | 35    | 13    |       |       |       |       |          |
| Covtype          | 8000     | 54        | 7       | 2985  | 3843  | 481   | 33    | 139   | 241   | 278   |       |       |          |
| Glass            | 214      | 10        | 6       | 70    | 76    | 17    | 13    | 9     | 29    |       |       |       |          |
| Hayes-roth       | 160      | 4         | 3       | 65    | 64    | 31    |       |       |       |       |       |       |          |
| Newthyroid       | 215      | 5         | 3       | 150   | 35    | 30    |       |       |       |       |       |       |          |
| Optdigit         | 1642     | 64        | 10      | 187   | 224   | 196   | 191   | 210   | 197   | 180   | 20    | 197   | 40       |
| Pendigit         | 3239     | 16        | 10      | 20    | 426   | 408   | 379   | 437   | 397   | 362   | 20    | 394   | 396      |
| Vehicle          | 684      | 17        | 4       | 218   | 50    | 217   | 199   |       |       |       |       |       |          |
| Wilt             | 4839     | 5         | 2       | 4578  | 261   |       |       |       |       |       |       |       |          |
| Wine quality-red | 1599     | 11        | 6       | 10    | 53    | 681   | 638   | 199   | 18    |       |       |       |          |

Imbalanced data sets from UCI Machine Learning repository (Optdigit, Pendigit and Vehicle are artificially imbalanced).

## MARGIN

The ensemble margin is an important factor to the generalization performance of voting classifiers. It can be used to measure the degree of confidence of the classification and to guide the design of classification algorithms.

| Max-margin | margin(x) | = | $\frac{v_y - \max_{c=1,\dots,L\cap c \neq y}(v_c)}{\sum_{c=1}^{L}(v_c)}$  |
|------------|-----------|---|---------------------------------------------------------------------------|
| Sum-margin | margin(x) | = | $\frac{v_y - \sum_{c=1,\dots,L \cap c \neq y} (v_c)}{\sum_{c=1}^L (v_c)}$ |

where  $v_{\rm v}$  is the number of votes for the true class y,  $v_{\rm c}$  is the number of votes for any other class c, and L is the number of classes

- Correctly classified training instances with high margin values represent instances located away from class decision boundaries and can contain a high degree of redundant information. Conversely, training instances with low margin values are often located near class decision boundaries and are more informative in a classification task.
- Misclassified training instances of highest margin (in absolute value) have the highest probability of being mislabelle

### Class imbalance performance

| Data       | Dessing | Under-  | Boundary bagging |            |  |  |
|------------|---------|---------|------------------|------------|--|--|
|            | Bagging | Bagging | Max-margin       | Sum-margin |  |  |
| Cleveland  | 28      | 29      | 29               | 29.5*      |  |  |
| Covtype    | 32.0    | 68      | 67.5             | 68*        |  |  |
| Glass      | 91.5    | 93      | 93.5*            | 93         |  |  |
| Hayes-roth | 77.5    | 77      | 80               | 83*        |  |  |
| Newthyroid | 81.5    | 93.5    | 94.0             | 94.5*      |  |  |
| Optdigit   | 69.5    | 87.5    | 90.5*            | 90.0       |  |  |
| Pendigit   | 62.5    | 88.0    | 90.5             | 90.5       |  |  |
| Vehicle    | 71      | 73      | 76.5             | 76.5       |  |  |
| Wilt       | 87      | 94.5    | 95.5             | 95.5       |  |  |
| Wine qua.  | 28      | 34      | 33.5*            | 33         |  |  |

Average classification accuracy of bagging, UnderBagging and boundary bagging for imbalance sampling involving two well-known margins

| Data       | Bagging | Under-  | Boundary bagging |            |  |  |
|------------|---------|---------|------------------|------------|--|--|
|            |         | Bagging | Max-margin       | Sum-margin |  |  |
| Cleveland  | 100.0   | 100.0   | 92.5*            | 94.5       |  |  |
| Covtype    | 100.0   | 59.0    | 68.5             | 68*        |  |  |
| Glass      | 20.0    | 20      | 20.0             | 20         |  |  |
| Hayes-roth | 52.5    | 46.5    | 31*              | 32         |  |  |
| Newthyroid | 38      | 12.0    | 15.0*            | 16         |  |  |
| Optdigit   | 100.0   | 28.5    | 20.5             | 20.5       |  |  |
| Pendigit   | 100.0   | 29      | 27*              | 29.0       |  |  |
| Vehicle    | 68.5    | 56.0    | 59               | 58.5*      |  |  |
| Wilt       | 26.0    | 7       | 4.5              | 4.5        |  |  |
| Wine qua.  | 100.00  | 84      | 80.5*            | 83         |  |  |

Maximum classification error per class of bagging, UnderBagging, and boundary bagging for imbalance sampling involving two well-known margins

# CONCLUSION

Results from this study show that our extended bagging approach for mislabelled training data filtering outperforms the majority te noise filte

Our experiments also demonstrate the superiority of our extended bagging approach in handling the class imbalance learning problem compared with traditional bagging and UnderBagging