LEARNING CONNECTIVITY WITH GRAPH CONVOLUTIONAL NETWORKS

Hichem SAHBI

CNRS, Sorbonne University, Paris, France **ICPR 2020**

Motivation and Contribution

Motivation

- Graph convolutional networks (GCNs) aim at generalizing deep learning to arbitrary irregular domains.
- The general principle of spatial GCNs consists in aggregating node representations be-

Orthogonality

• Learning multiple $\{A_k\}_k$ allows us to capture different graph topologies when achieving aggregation and convolution. With multiple $\{A_k\}_k$ convolution is updated as

$$(\mathcal{G} \star \mathcal{F})_{\mathcal{V}} = f\left(\sum_{k=1}^{K} \mathbf{A}_{k} \mathbf{U}^{\top} \mathbf{W}_{k}\right)$$

• Provided that $\{\psi(u')\}_{u'\in\mathcal{N}_k(u)}$ are linearly independent (1.i.), the sufficient condition that makes the aggregated representations l.i. is orthogonality, i.e., $\langle A_k, A_{k'} \rangle_F =$ $tr(\mathbf{A}_{k}^{\top}\mathbf{A}_{k'}) = 0$ and $\mathbf{A}_{k}, \mathbf{A}_{k'} \ge \mathbf{0}_{n}, \forall k \neq k'$, with \langle , \rangle_{F} being the Hilbert-Schmidt (Frobenius) inner product.

fore applying convolution to node aggregates.

SORBONNE UNIVERSITÉ

- The success of spatial GCNs is reliant on the topology (or structure) of input graphs.
- However, graph structures (either available or handcrafted) are powerless to optimally capture all the relationships between nodes as their setting is oblivious to the targeted applications.
- E.g., node-to-node relationships, in human skeletons, capture the intrinsic anthropometric characteristics of individuals (useful for their identification) while other connections, yet to infer, are necessary for recognizing their dynamics and actions.

Contribution

- We introduce a novel framework that learns convolutional filters on graphs together with their topological properties.
- The latter are modeled through matrix operators that capture multiple aggregates on graphs, learned using a constrained cross-entropy loss.
- We consider different *constraints* (including stochasticity, orthogonality and symmetry) acting as regularizers which reduce the space of possible solutions and overfitting.
- Stochasticity implements random walk Laplacians while orthogonality models multiple aggregation operators with non-overlapping supports; it also avoids redundancy and oversizing the learned GCNs with useless parameters. Symmetry reduces further the number of training parameters.

Spatial graph convolutional networks at a glance

- This equates (see the paper) $A_k \odot A_{k'} = 0_n$, $\forall k \neq k'$ with \odot denoting the entrywise hadamard product and $\mathbf{0}_n$ the $n \times n$ null matrix.
- Hence, we learn the matrices as

$$\min_{\{\mathbf{A}_k\}_k, \mathbf{W}} E(\mathbf{A}_1, \dots, \mathbf{A}_K; \mathbf{W})$$
s.t.
$$\mathbf{A}_k \odot \mathbf{A}_k > \mathbf{0}_n$$

$$\mathbf{A}_k \odot \mathbf{A}_{k'} = \mathbf{0}_n \qquad \forall k, k' \neq k$$

- We investigate a workaround that optimizes these matrices while guaranteeing their orthogonality during optimization.
- We consider $\exp(\gamma \hat{\mathbf{A}}_k) \oslash (\sum_{r=1}^K \exp(\gamma \hat{\mathbf{A}}_r))$ as a soft/crispmax reparametrization of \mathbf{A}_k , with \oslash being the entrywise hadamard division and $\{A_k\}_k$ free parameters in $\mathbb{R}^{n \times n}$.
- By choosing a large value of γ , it becomes possible to implement ϵ -orthogonality; a surrogate property where only one entry $A_{kij} \gg 0$ while all others $\{A_{k'ij}\}_{k'\neq k}$ vanish.
- The setting of γ and updated Jacobians are in the paper.

Symmetry and combination

• Symmetry is guaranteed by considering the reparametrization of each matrix as $A_k =$ $\frac{1}{2}(\mathbf{A}_k + \mathbf{A}_k^{\top})$ with \mathbf{A}_k being a free matrix, and it is maintained by multiplying the original gradient $\frac{\partial E}{\partial \mathbf{vec}(\{\mathbf{A}_k\}_k)}$ by the Jacobian

• Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ denote a graph endowed with (i) a signal $\{\psi(u) \in \mathbb{R}^s\}_u$ and (ii) an adjacency matrix A. The spatial convolution of \mathcal{G} with a set of filters \mathcal{F} and nodes \mathcal{V} is

 $(\mathcal{G} \star \mathcal{F})_{\mathcal{V}} = f(\mathbf{A} \mathbf{U}^{\top} \mathbf{W}).$

• Here AU^{\top} acts as a feature extractor which collects non-differential and differential statistics including means $\{\mathbb{E}(\psi(\mathcal{N}_r(u)))\}_u$ and (up to a squared power) variances $\{\psi(u) - \mathbb{E}(\psi(\mathcal{N}_r(u)))\}_u$ of node neighbors, before applying convolutions using W.

Learning connectivity with GCNs

Problem statement

- Considering E as the cross entropy loss, we turn the design of the connectivity matrix A as a part of GCN learning.
- One may use the chain rule in order to derive the gradient $\frac{\partial E}{\partial \mathbf{vec}(\mathbf{A})}$ and hence update \mathbf{A} using SGD.
- We upgrade SGD by learning both the convolutional parameters of GCNs together with connectivity matrices while implementing *orthogonality*, *stochasticity and symmetry*.
- Orthogonality allows designing these connectivity matrices with a minimum number of parameters, stochasticity normalizes nodes by their degrees and allows learning random

$$\mathbf{J}_{\text{sym}} = \frac{1}{2} \Big[\mathbf{1}_{\{k=k'\}} \cdot \mathbf{1}_{\{(i=i',j=j') \lor (i=j',j=i')\}} \Big]_{ijk,i'j'k'}$$

which is extremely sparse and highly efficient to evaluate.

• One may combine symmetry with all the aforementioned constraints by multiplying the underlying Jacobians, so the final gradient is obtained by multiplying the original one as

$$\frac{\partial E}{\partial \operatorname{vec}(\{\hat{\mathbf{A}}_k\}_k)} = \mathbf{J}_{(\operatorname{sym or stc})} \cdot \mathbf{J}_{\operatorname{orth}} \cdot \frac{\partial E}{\partial \operatorname{vec}(\{\mathbf{A}_k\}_k)}$$

Experiments

• Evaluation Set (SBU): 282 skeleton sequences acquired using the Microsoft Kinect sensor belonging to 8 categories. Skeleton representation is based on temporal chunking.

Const Oper		none e	A.	(th	³ ř	AL AND AND AL AND AL AND AL AND AL AND AL AND AL AND AND AL AND AL AND A	Check Check	A reality
	K = 1	89.2308	92.3077	—	89.2308	—	—	90.2564
HPM.	K = 4	87.6923	89.2308	89.2308	87.6923	90.7692	92.3077	89.4872
	K = 8	90.7692	95.3846	92.3077	90.7692	92.3077	92.3077	92.3077
	Mean	89.2308	92.3077	90.7692	89.2308	91.5384	92.3077	90.7692
	K = 1	92.3077	87.6923	_	95.3846	_	_	91.7949
LPM.	K = 4	92.3077	92.3077	93.8462	95.3846	90.7692	96.9231	93.5897
	K = 8	95.3846	90.7692	87.6923	93.8462	93.8462	92.3077	92.3077
	Mean	93.3333	90.2564	90.7692	94.8718	92.3077	94.6154	92.7180
	K = 1	95.3846	93.8462	_	95.3846	_	_	94.8718
Our	K = 4	93.8462	95.3846	95.3846	96.9231	93.8462	98.4615	95.6410

walk Laplacians, while symmetry reduces further the number of training parameters.

Stochasticity

• Stochasticity requires adding equality and inequality constraints in SGD, i.e., $A_{ij} \in [0, 1]$ and $\sum_{q} \mathbf{A}_{qj} = 1$.

• We consider a reparametrization of the learned matrices, as $\mathbf{A}_{ij} = h(\hat{\mathbf{A}}_{ij}) / \sum_{q} h(\hat{\mathbf{A}}_{qj})$, with $h : \mathbb{R} \to \mathbb{R}^+$ being strictly monotonic and this allows a free setting of the matrix $\hat{\mathbf{A}}$ during optimization while guaranteeing $A_{ij} \in [0, 1]$ and $\sum_{q} A_{qj} = 1$.

• During backpropagation, the gradient of the loss E (now w.r.t \hat{A}) is updated using the chain rule as

$$\frac{\partial E}{\partial \hat{\mathbf{A}}_{ij}} = \sum_{p} \frac{\partial E}{\partial \mathbf{A}_{pj}} \cdot \frac{\partial \mathbf{A}_{pj}}{\partial \hat{\mathbf{A}}_{ij}}.$$

• In practice $h(.) = \exp(.)$ and the new gradient (w.r.t \hat{A}) is obtained by multiplying the original one by the Jacobian $\mathbf{J}_{\text{stc}} = \begin{bmatrix} \frac{\partial \mathbf{A}_{pj}}{\partial \hat{\mathbf{A}}_{ii}} \end{bmatrix}_{p,i=1}^{n}$.

K = 8 |92.3077|93.8462|95.3846|90.7692|95.3846|90.7692|93.07692|Mean 93.8462 94.3590 95.3846 94.3590 94.6154 94.6154 94.4615

	Method	Accuracy		
=	GCNConv (Kipf et al. ICLR 2017)			
	ArmaConv (Bianchi et al, Arxiv 2019)			
1)	SGCConv (Wu et al, Arxiv 2019)			
	ChebyNet (Defferrard et al., NIPS 2016)			
	Raw coordinates (Yun et al., CVPR 2012)			
	Joint features (Yun et al., CVPR 2012)			
2-2-9	Interact Pose (Ji et al., ICMEW 2014) CHARM (Li et ak, ICCV 2015)			
Temporal Chunking $\psi(v)$	HBRNN-L (Du et al, CVPR 2015)	80.35		
	Co-occurence LSTM (Zhu et al. AAAI 2016)	90.41		
***	ST-LSTM (Liu et al. ECCV 2016)			
	Topological pose ordering (Baradel et al. Arxiv 2017)	90.5		
	STA-LSTM (Song et al., AAAI 2017)	91.51		
处 <i>为</i>	GCA-LSTM (Liu et al., IEEE TIP2018)	94.9		
	VA-LSTM (Zhang et al., ICCV 2017)	97.2		
	DeepGRU (Maghoumi et al., Arxiv 2018)	95.7		
	Riemannian manifold trajectory (Kacem et al., IEEE PAMI 2018)	93.7		
	Our best model	98.43		

