
LEARNING CONNECTIVITY WITH GRAPH CONVOLUTIONAL
NETWORKS

Hichem SAHBI

CNRS, Sorbonne University, Paris, France
ICPR 2020

Motivation and Contribution

Motivation

•Graph convolutional networks (GCNs) aim at generalizing deep learning to arbitrary

irregular domains.

•The general principle of spatial GCNs consists in aggregating node representations be-

fore applying convolution to node aggregates.

•The success of spatial GCNs is reliant on the topology (or structure) of input graphs.

•However, graph structures (either available or handcrafted) are powerless to optimally

capture all the relationships between nodes as their setting is oblivious to the targeted

applications.

•E.g., node-to-node relationships, in human skeletons, capture the intrinsic anthropomet-

ric characteristics of individuals (useful for their identification) while other connections,

yet to infer, are necessary for recognizing their dynamics and actions.

Contribution

•We introduce a novel framework that learns convolutional filters on graphs together with

their topological properties.

•The latter are modeled through matrix operators that capture multiple aggregates on

graphs, learned using a constrained cross-entropy loss.

•We consider different constraints (including stochasticity, orthogonality and symmetry)

acting as regularizers which reduce the space of possible solutions and overfitting.

• Stochasticity implements random walk Laplacians while orthogonality models multi-

ple aggregation operators with non-overlapping supports; it also avoids redundancy and

oversizing the learned GCNs with useless parameters. Symmetry reduces further the

number of training parameters.

Spatial graph convolutional networks at a glance

•Let G = (V , E) denote a graph endowed with (i) a signal {ψ(u) ∈ R
s}u and (ii) an

adjacency matrix A. The spatial convolution of G with a set of filters F and nodes V is

(G ⋆ F)V = f
(

A U
⊤
W

)

.

•Here AU
⊤ acts as a feature extractor which collects non-differential and differen-

tial statistics including means {E(ψ(Nr(u)))}u and (up to a squared power) variances

{ψ(u)− E(ψ(Nr(u)))}u of node neighbors, before applying convolutions using W.

Learning connectivity with GCNs

Problem statement

•Considering E as the cross entropy loss, we turn the design of the connectivity matrix

A as a part of GCN learning.

•One may use the chain rule in order to derive the gradient ∂E
∂vec(A) and hence update A

using SGD.

•We upgrade SGD by learning both the convolutional parameters of GCNs together with

connectivity matrices while implementing orthogonality, stochasticity and symmetry.

•Orthogonality allows designing these connectivity matrices with a minimum number of

parameters, stochasticity normalizes nodes by their degrees and allows learning random

walk Laplacians, while symmetry reduces further the number of training parameters.

Stochasticity

• Stochasticity requires adding equality and inequality constraints in SGD, i.e., Aij ∈ [0, 1]
and

∑

qAqj = 1.

•We consider a reparametrization of the learned matrices, as Aij = h(Âij)/
∑

q h(Âqj),

with h : R → R
+ being strictly monotonic and this allows a free setting of the matrix Â

during optimization while guaranteeing Aij ∈ [0, 1] and
∑

qAqj = 1.

•During backpropagation, the gradient of the loss E (now w.r.t Â) is updated using the

chain rule as
∂E

∂Âij

=
∑

p

∂E

∂Apj
.
∂Apj

∂Âij

.

• In practice h(.) = exp(.) and the new gradient (w.r.t Â) is obtained by multiplying the

original one by the Jacobian Jstc =
[∂Apj

∂Âij

]n

p,i=1
.

Orthogonality

•Learning multiple {Ak}k allows us to capture different graph topologies when achieving

aggregation and convolution. With multiple {Ak}k convolution is updated as

(G ⋆ F)V = f

(K
∑

k=1

AkU
⊤
Wk

)

.

• Provided that {ψ(u′)}u′∈Nk(u) are linearly independent (l.i.), the sufficient condition

that makes the aggregated representations l.i. is orthogonality, i.e., 〈Ak,Ak′〉F =
tr(A⊤

kAk′) = 0 and Ak,Ak′ ≥ 0n, ∀k 6= k′, with 〈, 〉F being the Hilbert-Schmidt (Frobe-

nius) inner product.

•This equates (see the paper) Ak ⊙ Ak′ = 0n, ∀k 6= k′ with ⊙ denoting the entrywise

hadamard product and 0n the n× n null matrix.

•Hence, we learn the matrices as

min{Ak}k,W E
(

A1, . . . ,AK;W
)

s.t. Ak ⊙Ak > 0n

Ak ⊙Ak′ = 0n ∀k, k′ 6= k.

•We investigate a workaround that optimizes these matrices while guaranteeing their or-

thogonality during optimization.

•We consider exp(γÂk) ⊘ (
∑K

r=1 exp(γÂr)) as a soft/crispmax reparametrization of Ak,

with ⊘ being the entrywise hadamard division and {Âk}k free parameters in R
n×n.

•By choosing a large value of γ, it becomes possible to implement ǫ-orthogonality; a

surrogate property where only one entry Akij ≫ 0 while all others {Ak′ij}k′ 6=k vanish.

•The setting of γ and updated Jacobians are in the paper.

Symmetry and combination

• Symmetry is guaranteed by considering the reparametrization of each matrix as Ak =
1
2(Âk+Â

⊤
k) with Âk being a free matrix, and it is maintained by multiplying the original

gradient ∂E
∂vec({Ak}k)

by the Jacobian

Jsym =
1

2

[

1{k=k′}.1{(i=i′,j=j′)∨(i=j′,j=i′)}
]

ijk,i′j′k′

which is extremely sparse and highly efficient to evaluate.

•One may combine symmetry with all the aforementioned constraints by multiplying the

underlying Jacobians, so the final gradient is obtained by multiplying the original one as

∂E

∂vec({Âk}k)
= J(sym or stc).Jorth.

∂E

∂vec({Ak}k)
.

Experiments

•Evaluation Set (SBU): 282 skeleton sequences acquired using the Microsoft Kinect

sensor belonging to 8 categories. Skeleton representation is based on temporal chunk-

ing.

P
P

P
P
P

P
P
P
P

P
P
P

P
P
P

P
P
P
P

P
P
PP

Oper

Const

no
ne

sy
m

or
th

st
c

sy
m

+
or

th

or
th

+
st

c

M
ea

n

HPM.
K = 1 89.2308 92.3077 – 89.2308 – – 90.2564

K = 4 87.6923 89.2308 89.2308 87.6923 90.7692 92.3077 89.4872

K = 8 90.7692 95.3846 92.3077 90.7692 92.3077 92.3077 92.3077

Mean 89.2308 92.3077 90.7692 89.2308 91.5384 92.3077 90.7692

LPM.
K = 1 92.3077 87.6923 – 95.3846 – – 91.7949

K = 4 92.3077 92.3077 93.8462 95.3846 90.7692 96.9231 93.5897

K = 8 95.3846 90.7692 87.6923 93.8462 93.8462 92.3077 92.3077

Mean 93.3333 90.2564 90.7692 94.8718 92.3077 94.6154 92.7180

Our
K = 1 95.3846 93.8462 – 95.3846 – – 94.8718

K = 4 93.8462 95.3846 95.3846 96.9231 93.8462 98.4615 95.6410

K = 8 92.3077 93.8462 95.3846 90.7692 95.3846 90.7692 93.0769

Mean 93.8462 94.3590 95.3846 94.3590 94.6154 94.6154 94.4615

✲�✁✂ ✲� ✲✄✁✂ ✄ ✄✁✂ � �✁✂

✲☎

✲✆✁✂

✲✆

✲�✁✂

✲�

✲✄✁✂

✄

✄✁✂

�

(raw coordinates)

Temporal Chunking
ψ(v)

Motion trajectory (v)

Method Accuracy

GCNConv (Kipf et al. ICLR 2017) 90.00

ArmaConv (Bianchi et al, Arxiv 2019) 96.00

SGCConv (Wu et al, Arxiv 2019) 94.00

ChebyNet (Defferrard et al., NIPS 2016) 96.00

Raw coordinates (Yun et al., CVPR 2012) 49.7

Joint features (Yun et al., CVPR 2012) 80.3

Interact Pose (Ji et al., ICMEW 2014) 86.9

CHARM (Li et ak, ICCV 2015) 83.9

HBRNN-L (Du et al, CVPR 2015) 80.35

Co-occurence LSTM (Zhu et al. AAAI 2016) 90.41

ST-LSTM (Liu et al. ECCV 2016) 93.3

Topological pose ordering (Baradel et al. Arxiv 2017) 90.5

STA-LSTM (Song et al., AAAI 2017) 91.51

GCA-LSTM (Liu et al., IEEE TIP2018) 94.9

VA-LSTM (Zhang et al., ICCV 2017) 97.2

DeepGRU (Maghoumi et al., Arxiv 2018) 95.7

Riemannian manifold trajectory (Kacem et al., IEEE PAMI 2018) 93.7

Our best model 98.43

