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Problem Definition

3D object detection aims to classify the object categories and
estimate the oriented 3D bounding boxes of physical objects
from 3D sensor data, such as point clouds.

Background

0%
=12.50%
7242

67.24
65.03
64.01

- e 59.81
5012

56.87

55.99
| 52.61
| 50.29
y 47.47

Easy Moderate Hard

Existing 3D object detection methods have shown good
performance on standard 3D object detection datasets.
However, in real-world applications, due to various reasons
(such as occlusion, low reflectivity of objects and fewer laser
beams), the point cloud samples obtained in real-time
running may be sparser. Therefore, a well-trained model may
perform poorly in these situation

Contributions

e We analyze the role of critical points in 3D object detection
and propose to generate point cloud samples with less
critical points for data augmentation.

e We propose PointDrop, an adversarial data augmentation
method in 3D object detection, which actively generates
challenging sparse samples to improve the robustness of the
model.

e Experimental results on two sparse point clouds datasets,
which are manually created from the KITTI dataset,
demonstrate the superiority of our proposed PointDrop.

Overview of PointDrop
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PointDrop employs an augmentation network (augmentor) to
provide sparse samples and optimizes the augmentor and
the detector in an adversarial way.

e The augmentor learns to produce hard sparse samples by
dropping the features of some critical points in the original
samples.

e The detector learns to handle sparse samples robustly by
competing against the augmentor.

e The augmentor can adjust the difficulty of the generated
sparse samples by taking the detector's loss as feedback.
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An illustration of how the augmentor generates a sparse
mask for apillar :
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An illustration of how the detector exploits the sparse mask
to generatea sparse global feature for a pillar :
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Loss Function

The loss for the augmentor:
L,=L(X")+A|1.0—exp(L(X")—L(X))]|
The loss for the detector:
L,=L(X)+L(X)+7||F,~F,,
Experiments

Result on the KITTI validation 3D detection benchmark
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Category Method Sparse-0% Sparse-ZyS”/c Sparse-50%
PointPillars [9] 85.44 81.41 78.57
Car PointPillars + RandomDrop 85.16 82.15 80.61
PointPillars + PointDrop 86.42 85.05 81.35
PointPillars 67.01 64.27 56.55
Peiisstiis PointPillars + RandomDrop 64.97 63.04 61.33
) PointPillars + PointDrop 67.16 65.40 61.86
PointPillars 79.00 71.58 48.04
Cyclists PointPillars + RandomDrop 79.17 78.89 71.14
i PointPillars + PointDrop 80.83 80.02 72.03

Result on the KITTI validation BEV detection benchmark

Eas

Category Method Sparse-0% Spu:se—2yS‘Vc Sparse-50%

PointPillars [9] 89.87 89.93 89.50

Car PointPillars + RandomDrop 89.98 89.96 89.72

PointPillars + PointDrop 90.02 90.06 90.05

PointPillars 72.53 70.05 66.72

Pedesitians PointPillars + RandomDrop 70.85 71.14 67.51

) ) PointPillars + PointDrop 71.41 71.29 70.69

PointPillars 81.88 75.40 50.97

Cyclists PointPillars + RandomDrop 82.02 81.05 73.38

) PointPillars + PointDrop 82.59 81.74 74.20

Alabtion Study
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