Cluster-Size Constrained Network Partitioning (M. Mironov, K. Avrachenkov)

We consider network partitioning with the desired
cluster sizes, use the technique similar to Glauber
Dynamics and apply it for the SBM model.

Stochastic Block Model is defined as follows
@ We have a random graph Ggpm = (V, E) with two blocks Vi, Va,
where V = Vi LI Vs
@ For each pair of nodes {v, u} an edge is drawn independently
according to
p1, v,u€ Vi,
P({viu} € E) = p, vyue Vs,

g, overwise,

We also define the mean-field SBM model

e We have a full graph G,y = (V, E) with two blocks V4, V5, where
V=wuWw

@ For each pair of nodes {v, u} an edge has its weight according to

p1, v,u€ WV,
Weight ({v,u}) = < pa, v,u€ Vs,

g, overwise,

We consider labels for each node from {-1, 1} and thus
have set of configurations

{(-1L,1}Voxr={0| D a(v)=0

veV

We measure clustering result with global energy
defined by

e(o) = — Z o(u)o(v).

{uv}cE

The contribution of a single node to energy we denote
as local energy and define by

g(o,v) = —a(v) Z a(w).

Wrawy

The algorithm we offer does the discrete optimization
where the simple step is the swap of labels of two
arbitrary nodes in case it reduces the global energy.

The algorithm has purely local nature, which means it
can be distributed over any number of machines with
shared memory and we emphasize that.

So, the algorithm is described as follows

@ Choose n/2 nodes to have label -1 at random and n/2 others are set
with 1

@ Choose randomly a pair of nodes with different labels

© Calculate the sum of their local energies £ as if they are labeled as it
is, and &7 in case they swap their labels

Q@ Choose either original labels or swapped ones based on flip of a biased
coin with probability

_ exp(—pe1)
exp(—fe1) 4 exp(—fea)
@ |If stop criteria is not met go to step 2

Q@ lterate over all nodes and update the label of each of them based on
weighted majority of its neighbours

Stop criteria might be just the number of steps.
For the mean-field SBM we have theoretical upper
bound on running time:

Let p1 + p2 > 2q and relative clustering error 6 = o(1). Then, the
expected number of steps T to obtain the almost exact global optimum in
the mean-field SBM is upper bounded by

r-o(3)

For the SBM graph simulations show almost the same
time complexity. Alpha=1 means equal blocks
Algorithm steps to achieve 1/In(n) relative clustering error

alpha=1, pl=p2=7In(n)/n, g=3In(n)/n

expected steps for mean field SEM
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In terms of accuracy algorithm is comparable with
Spectral clustering, which is proven to be optimal for
SBM model (but works in O(n3)):
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Figure: Our algorithm Figure: Spectral clustering

To conclude:
Advantages:
o the running time complexity of the algorithm is roughly d - n/d for the
SBM graphs;
@ the algorithm can be effectively distributed over any number of
machines with shared memory and with no need in synchronization;
@ the approach can be customized with different objective functions.
Drawbacks:
@ the output of the algorithm is not reproducible, it is a result of a
random process;

@ for the extremely difficult problems it works worse than the spectral
clustering in the case of balanced clusters.



