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Abstract

Human Activity Recognition (HAR), using inertial measurements from on-
body devices, has not seen a great advantage from deep architectures. This
drawback is mainly due to the lack of annotated data, diversity of on-body
device configurations, the class-unbalance problem, and non-standard hu-
man activity definitions. Approaches for improving the performance of such
architectures, e.g., transfer learning, are therefore difficult to apply. This pa-
per introduces a method for transfer learning from human-pose estimations
as a source for improving HAR using inertial measurements obtained from
on-body devices. We propose to fine-tune deep architectures, trained using
sequences of human poses from a large dataset and their derivatives, for
solving HAR on inertial measurements from on-body devices. Derivatives
of human poses will be considered as a sort of synthetic data for HAR. We
deploy two different temporal-convolutional architectures as classifiers. An
evaluation of the method is carried out on three benchmark datasets improv-
ing the classification performance.

Source Dataset
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Lara-Set Record. Rate Measurements Dimensions Channels
LARa-MoCap 200Hz 22 Joint Poses [Posx,y,z, Rotx,y,z] 132 Channels
LARa-OBs 100Hz 5 On-Body Devices [Accx,y,z, AngAccx,y,z] 30 Channels
LARa-SOBS 200/100Hz 22 Joint Poses [Posx,y,z, Rotx,y,z] 132 Channels

LARa is a large dataset of recordings of 714[min] from subjects in the Intralogistics. It consists of measurements
from a marker-based MoCap system and On-Body Devices (OBs). A synthetic set is created by derivating

sequences of joint poses, LARA SOBs.
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Overview of the proposed approach using an example of three
IMUs worn by a worker at both wrists and the torso.
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Experiments on Target Datasets
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Weighted F1[%] of the datasets. The networks are trained from scratch (None) or pretrained on LARa datasets. Weighted F1[%] correspond to the mean of training/deploying
the network five times. Three proportions of the training datasets are considered.
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Harmonic mean of the precision and recall per class activity for the three test datasets, trained from scratch and using LARa sets for pre-training.

Architecture Pamap2 Locomotion Gestures
tCNN [1] 87.37* 87.80 85.10
CNN [2] 87.20* - 90.80
IMU-tCNN [3] 89.01 88.23* 92.15
tCNN-SOBs 90.95 88.43 91.31
tCNN-MoCap 91.48 88.74 90.86
tCNN-OBs 91.53 87.75 90.97

Weighted F1[%] of the tCNN pretrained with LARa-MoCap and SOBs on three datasets.
Results are compared with the benchmark networks of the dataset.
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