Age Gap Reducer-GAN for Recognizing Age-Separated Faces

Daksha Yadav*, Naman Kohli*, Mayank Vatsa^, Richa Singh^, Afzel Noore~ *West Virginia University, ^IIT Jodhpur, ~Texas A&M University-Kingsville

Motivation

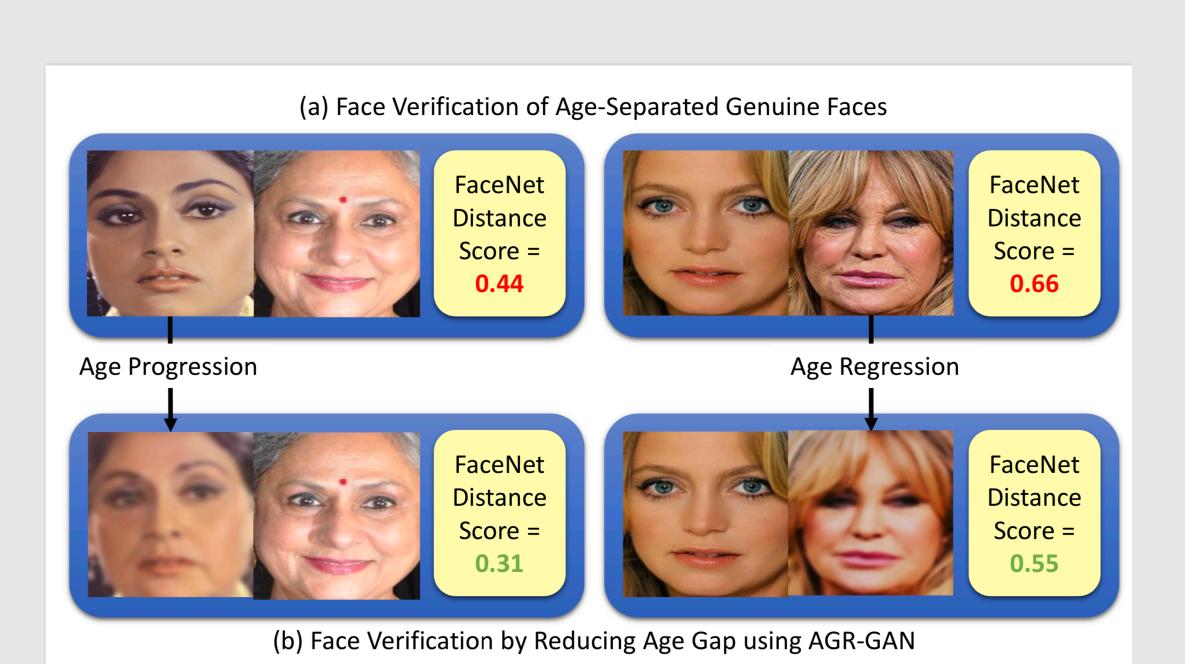
- Building age-invariant face recognition algorithms beneficial in applications such as locating missing persons, homeland security, and passport services
- ➤ Generative adversarial networks (GANs) are being utilized to generate synthetic images using convolutional neural nets (CNNs). Different GAN based approaches have been proposed for facial age simulation [1, 2]

Issues with existing GAN based research on facial aging:

- Majority focus only on generating images for different age groups.
- Only some of these techniques can produce both age-progressed as well as age-regressed faces and very few of them cater to both young as well as old age groups.
- Most do not demonstrate their efficacy in enhancing the face recognition accuracy of age-separated probe and gallery face images.

Research Contributions

- Introducing AGR-GAN: Uses a multi-task discriminator that is able to progress/regress the age of an input face to a target age group
- Incorporating an identity preserving feature which ensures that the generated (regressed/progressed) face image has the same identity representation as the input face image
- Performing joint learning of the age group estimator module with the image generation. This novel architecture eliminates the need for paired age-labeled data in the training phase
- ➤ Demonstrating the efficacy on three publicly available facial aging databases for age-separated face recognition



The proposed AGR-GAN is utilized with face recognition models such as FaceNet [3] to decrease the distance score of age-separated faces

Proposed Age Gap Reducer (AGR)-GAN

Components of AGR-GAN:

Representor R:

- To learn <u>low-dimensional representations enc</u> of input faces which are invariant to age progression/regression
- Consists of 5 blocks of conv layers with stride = 2 and 5 × 5 conv kernels followed by an exponential linear unit (ELU) layer
- fc-layer is applied to compute the low-dim encoding enc

Generator G:

- To utilize enc to synthesize a face image x' with the same gender g, and target age group a
- Consists of a fc-layer followed by six blocks of transposed conv layers with stride = 2 and padding = 2.

Discriminator D_{enc} :

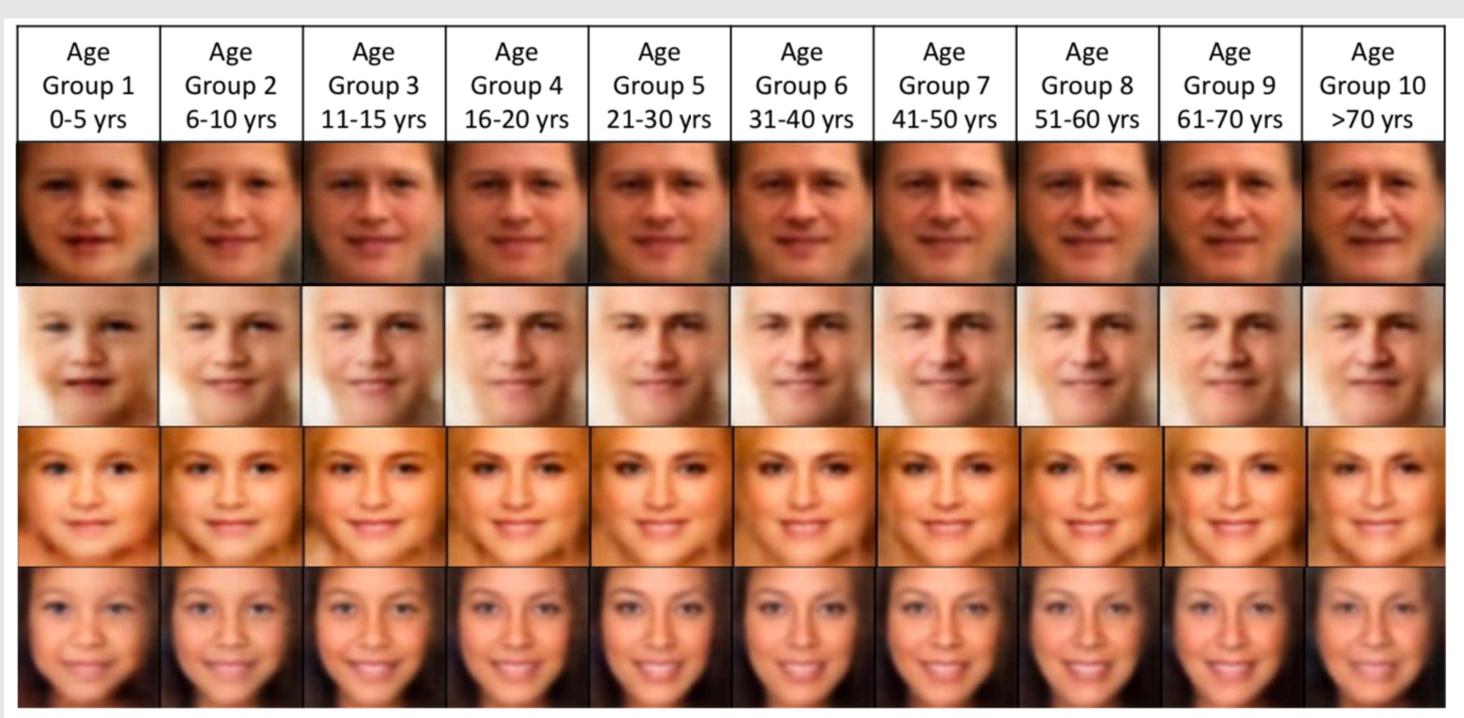
- To ensure that the <u>distribution of enc</u> approaches the <u>prior distribution</u>
- \clubsuit Respresentor is forced to generate enc so that it can fool D_{enc} .
- Ensures that enc smoothly populates the low-dim latent space to remove unrealistic faces

Discriminator D_{face} :

- To distinguish generated images by G from real images
- Consists of six blocks of conv layers with kernel size = 5, stride =
 2, and padding = 2.

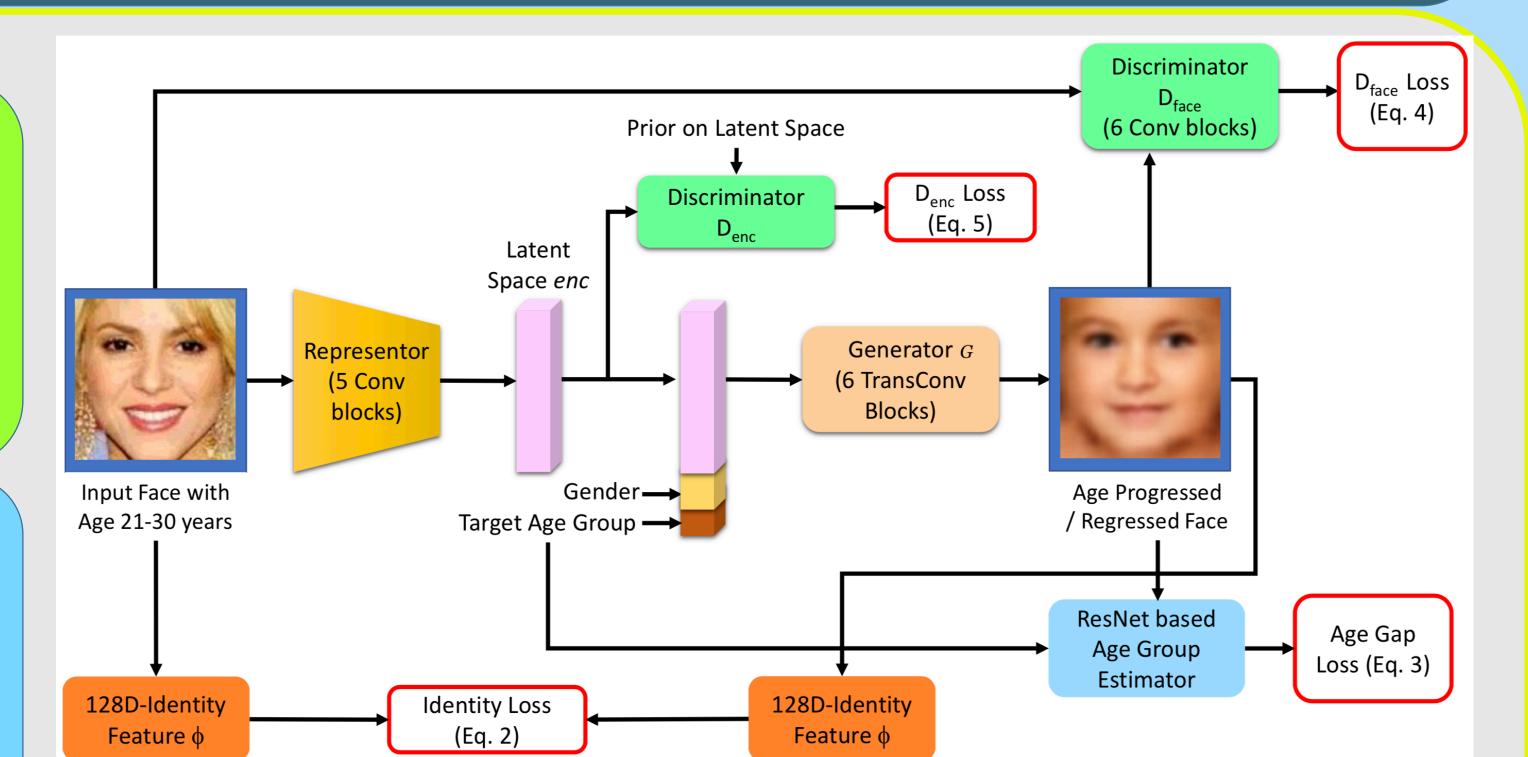
Age Group Estimator:

- To reduce the age gap between the input face (x) and the generated face image (x')
- Utilizes ResNet-18 model [30] as its backbone to predict the age group of the input image.
- Loss function = the sum of cross-entropy loss between the correct and predicted age group + mean average group error.



Age Progression

Sample generated outputs by the proposed AGR-GAN across age groups



Proposed Age Gap Reducer (AGR)-GAN architecture

Database	Metric	Per-DB SOTA	Only FaceNet [3]	FaceNet + AGR-GAN
MORPH	Rank-1	93.60 [4]	94.03	94.15
CACD-VS	Accuracy @ FPR=0.1%	91.10 [4]	97.50	98.39
CALFW	Accuracy @ FPR=0.1%	86.50 [5]	57.50	87.15

Increase in FaceNet model-based face recognition performance by using faces generated from the AGR-GAN

MORPH [3]	CACD- VS [4]	CALFW [5]
5.26	8.45	6.79
12.18	11.32	12.38
14.32	15.09	14.23
17.65	18.94	19.36
29.22	27.13	22.71
33.51	39.10	35.13
47.20	42.59	41.36
54.19	53.72	58.75
63.69	68.24	63.84
69.85	74.32	78.38
	[3] 5.26 12.18 14.32 17.65 29.22 33.51 47.20 54.19 63.69 69.85	[3]VS [4]5.268.4512.1811.3214.3215.0917.6518.9429.2227.1333.5139.1047.2042.5954.1953.7263.6968.24

10 (>70) 69.85 74.32 78.38

Age estimation (years) of faces generated by the proposed AGR-GAN

the values of age groups 1, 2, and 10 may be attributed to lesser number of face images in the training set

The difference in

References:

[1] Liu et al., "Attribute-aware face aging with wavelet- based generative adversarial networks," in IEEE CVPR, 2019, pp. 11 877–11 886.

[2] Yang et al., "Learning face age progression: A pyramid architecture of GANs," in IEEE CVPR, 2018, pp. 31–39. [3] Schroff et al., "FaceNet: A unified embedding for face recognition and clustering," in IEEE CVPR, 2015, pp. 815–823.

[4] Li et al., "Distance metric optimization driven convolutional neural network for age invariant face recognition," Pattern Recognition, vol. 75, pp. 51–62, 2018.

[5] Zheng et al., "Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments," CoRR, vol. abs/1708.08197, 2017.