

Context Aware Group Activity Recognition

Avijit Dasgupta¹

C. V. Jawahar¹

Karteek Alahari²

¹ CVIT, IIIT Hyderabad, India

² THOTH, Inria, France

Problem Definition

Given a multi-person video, the task is to infer

- actions being performed by the individuals
- their group activities

Group Activity: Crossing

Motivation

- Existing approaches rely on *appearance* only features
- Unable to differentiate between visually similar activities
- **Context** gives cues for group activity understanding

Walking on a **sidewalk**

Crossing a **road**

Key Contributions

- Leverage contextual cues for group activity
- Two stream network to encode context
- Two types of contextual cues are proposed
 - o Pose
 - o Scene Labels

The Proposed Model

The Pose Contextual Cues

Each activity has its own unique posture

The Pose Context Network

The Scene Contextual Cues

Scene labels provide information about the environment

(a) Crossing activity

(b) Walking activity

The Scene Context Network

Results & Evaluation

Dataset:

- Volleyball
 - o contains 4830 clips of 55 volleyball sports videos
 - o 9 individual actions and 8 group activities
- Collective Activity
 - o 44 videos of traffic scenarios
 - o 6 individual actions and 5 group activities

Comparison	with State-	-of-the-arts on	Volleyball	Dataset:
I			1	

Method	Backbone	Group Activity ↑	Individual Action ↑
Li et al., ICCV'17	Inception-v3	66.90%	-
Ibrahim et al., CVPR'16	AlexNet	81.90%	-
Shu et al., CVPR'17	VGG16	83.30%	-
Biswas et al., WACV'18	AlexNet	83.47%	76.65%
Qi et al., ECCV'18	VGG16	89.30%	-
Ibrahim et al., ECCV'18	VGG19	89.50%	-
Bagautdinov et al., CVPR'17	Inception-v3	90.60%	81.80%
Hu et al., CVPR'20	VGG16	91.4%	-
Wu et al., CVPR'19	Inception-v3	91.62%	81.28%
Azar et al., CVPR'19	I3D	93.04%	-
Ours (Appearance + Pose Context)	Inception-v3 + HR-Net	93.04%	83.02%

Method	Backbone	Group Activity ↑
Lan et al., TPAMI'11	-	79.70%
Choi et al., ECCV'12	-	80.40%
Deng et al., CVPR'16	AlexNet	81.20%
Ibrahim et al., CVPR'16	AlexNet	81.50%
Azar et al., CVPR'19	I3D	85.75%
Li et al., ICCV'17	Inception-v3	86.10%
Shu et al., CVPR'17	VGG16	87.20%
Wu et al., CVPR'19	Inception-v3	88.50%
Wu et al., CVPR'19	VGG19	88.81%
Qi et al., ECCV'18	VGG16	89.10%
Ours (Appearance + Scene Context)	VGG19	90.07 %

Comparison with State-of-the-arts on Collective Dataset:

Acknowledgement

This work was supported in part by the ANR AVENUE project (grant ANR-18-CE23-0011). Avijit Dasgupta is supported by a Google India PhD Fellowship.