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We propose Directionally Paired 
Principal Component Analysis (DP-PCA), 
an optimal linear dimension-reduction 
model for estimating coupled yet 
partially observable variable sets. 
• Directly minimizes prediction errors 

rather than maximizing cov/corr
• Lower prediction errors compared to  

existing linear cross-decomposition 
methods (PLS/CCA [1, 2])
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(Derivation in Section II.)
Solution steps:
1. Solve eigenvalue problem on the 

𝑁×𝑁 matrix 𝑌𝑌& : 𝑌&𝑌𝑍 = 𝑍𝐷
2. Solve 𝑋&𝑈 = 𝑍 for 𝑈. (𝑍 with size 

𝑁×𝐿 contains 𝐿 eigenvectors.)
3. Plug in optimality condition for 𝑉
(Dependently Coupled PCA (DP-PCA): obtain 
𝑈 via PCA on 𝑋. Concurrent work [3].)

Comparison with Related Approaches

PROPOSED DP-PCA

Reconstruction and Prediction Errors

Execution Time and Storage
DP-PCA: smaller and comparatively fast

EVALUATION

CONCLUSIONS

Optimal solutions when estimating 
coupled yet partially observable data 
using linear models: 
• With two sets of bases: DP-PCA fully 

optimized for unobservables (Y)
• With a single set of bases: 

Dependently Coupled PCA (DC-PCA) 
fully optimized for observables (X).
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Data: 𝑁 data samples,
Observable:  𝑀$ dimensions,
Unobservable (at testing): 𝑀' dimensions,
𝑀$, 𝑀' are too large for direct regression
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Reconstruction errors on 𝑋!"#! Prediction errors on 𝑌!"#!

Total errors on {𝑋!"#! , 𝑌!"#!}

MNIST (𝑀# = 𝑀$ = 392)
Independent PCA: lower 
bound (infeasible)
PLSR [1], joint PCA, CR [4]

TABLE I: Storage requirement on dimension reduction ap-
proaches for coupled data.

Method Results to be stored after training

JPCA X̄, Ȳ : mean values of training data (size M1 and M2);
U, V : bases for X and Y (size M1 ⇥ L and M2 ⇥ L).

PLSR

X̄, Ȳ: mean values of training data (size M1 and M2);
�X,�Y : std. of training data (size M1 and M2);
U,Xrot: loadings and rotations for X (both size M1 ⇥ L);
One of the following:
(1) V: loadings for Y (size M2 ⇥ L) and

R: regression matrix between A and B (size L⇥ L),
(2) � = VR: regression coefficients (size M2 ⇥M1).

CR

X̄, Ȳ: mean values of training data (size M1 and M2);
�X,�Y : std. of training data (size M1 and M2);
U,V: bases for X and Y (size M1 ⇥ L and M2 ⇥ L);
Ā, B̄: mean values in the subspace (size L);
�A,�B: standard deviation in the subspace (size L);
�: correlation coefficient between A and B (size L⇥ L).

DP-PCA same as those in the J(oint) PCA

of the observable part to the unobservable data Y . To predict
the values of the unobservable test data Ŷtest, those three
approaches apply a prediction transform to Atest. Based on
the reconstructed and predicted values of the test data, we
finally compute the mean squared error per element between
{Xtest, Ytest} and {X̂test, Ŷtest}.

Table I provides a list of the storage requirement for
each approach to facilitate the reconstruction and prediction
process. The data structures are consistent with the publicly
available implementations discussed above. Compared with
baseline methods PLSR and CR, the proposed DP-PCA re-
quires minimal storage that remains the same as joint PCA.
In the following subsection, we introduce the benchmark
datasets for our experiments and report execution time for
those methods.

B. Benchmark Datasets and Execution Time
1) Datasets: We conduct experiments on three types of

datasets: synthetic, multi-target regression, and single-channel
image data. The details of those datasets elaborated as follows.

Synthetic data: We generate a data matrix D of size (M1+
M2) ⇥ N , containing N data measurements from a multi-
variate Gaussian distribution with random mean µM1+M2 and
random covariance matrix ⌃M1+M2 . We then split the rows
of D into the observable part X with size M1 ⇥ N and
unobservable part Y with size M2 ⇥N . Thus, the correlation
between the two parts are established via the covariance matrix
⌃M1+M2 . By keeping 70% samples for training and the rest
for testing, the N data samples are further divided into training
set {Xtrain, Ytrain} and test set {Xtest, Ytest}. Following the
procedures illustrated in the previous subsection, the training
set is used for computing bases U, V and other required results
listed in Table I, whereas the test set is reserved for computing
reconstruction (for Xtest) and prediction (for Ytest) errors.

Multi-target regression data: As discussed at the begin-
ning of Chapter IV-A, predicting the values of the unobserv-
able variables Y can be formulated as a multi-target regression
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Fig. 2: Comparison on execution time on the synthetic dataset.

problem. In multi-target regression datasets, the observable
variables X are called “features” while the unobservable
variables Y are considered “targets.” Among all 18 datasets
in [11], we select 4 of them which satisfy the following two
conditions. (1) the dimensions of both X and Y are larger
than 10 so that there is room for varying the dimension L of
the subspace, and (2) no missing values exist in the data.

Single-channel image data: We further repeat the exper-
iments on MNIST [12], which are real datasets with larger
dimensions than those of the multi-target regression datasets.
Pixels of each image are split into two halves as observable
and unobservable either (1) according to the sequence of
indices (i.e., sequential split) or (2) randomly yet consistently
across images (i.e., random split). In addition to measuring the
reconstruction/prediction errors, we also evaluate the classifi-
cation accuracy of the reconstructed data using a pre-trained
classifier.

2) Execution time: We report the execution time of each
method for 100 runs on the synthetic dataset in Fig. 2. The
execution time is benchmarked on a Ubuntu 16.04 Desktop
with 8-core Intel Core i7-6700K CPU @ 4.00GHz and 16GB
DDR4 RAM @ 2133MHz. In a strict sense, the reported
execution time does not necessarily demonstrate the time
complexity of the approaches because they are not optimized
uniformly. Instead, the chart in Fig. 2a reflects the experi-
ence with popular implementations that are publicly available.
According to the chart, the required training time for PLSR
is substantially longer than others. Besides, as illustrated by
Fig. 2b, the training time in PLSR also increases significantly
as the budget (i.e., the dimension of the target subspaces)
increases. As for the testing time, all approaches have testing
time fluctuated within a small range. We also compare the
execution time for CR between the original R implementation
and our translated version5 in Python, and find out that the
Python version is about 5 times faster. In sum, our python
implementation of DP-PCA is relatively faster than its open-
source competitors.

C. Experiment Results
Fig. 3 illustrates the reconstruction and prediction errors

on the synthetic multi-variate Gaussian data using involved

5https://gist.github.com/thelittlekid/89630241f5b90a838a7b583a5836d350
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variate Gaussian distribution with random mean µM1+M2 and
random covariance matrix ⌃M1+M2 . We then split the rows
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unobservable part Y with size M2 ⇥N . Thus, the correlation
between the two parts are established via the covariance matrix
⌃M1+M2 . By keeping 70% samples for training and the rest
for testing, the N data samples are further divided into training
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the subspace, and (2) no missing values exist in the data.
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and unobservable either (1) according to the sequence of
indices (i.e., sequential split) or (2) randomly yet consistently
across images (i.e., random split). In addition to measuring the
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method for 100 runs on the synthetic dataset in Fig. 2. The
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with 8-core Intel Core i7-6700K CPU @ 4.00GHz and 16GB
DDR4 RAM @ 2133MHz. In a strict sense, the reported
execution time does not necessarily demonstrate the time
complexity of the approaches because they are not optimized
uniformly. Instead, the chart in Fig. 2a reflects the experi-
ence with popular implementations that are publicly available.
According to the chart, the required training time for PLSR
is substantially longer than others. Besides, as illustrated by
Fig. 2b, the training time in PLSR also increases significantly
as the budget (i.e., the dimension of the target subspaces)
increases. As for the testing time, all approaches have testing
time fluctuated within a small range. We also compare the
execution time for CR between the original R implementation
and our translated version5 in Python, and find out that the
Python version is about 5 times faster. In sum, our python
implementation of DP-PCA is relatively faster than its open-
source competitors.

C. Experiment Results
Fig. 3 illustrates the reconstruction and prediction errors
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5https://gist.github.com/thelittlekid/89630241f5b90a838a7b583a5836d350

Classification on Reconstructed data

(a) sequential missing (b) random-consistent missing

Fig. 6: Classification accuracy on partially observable and
noisy MNIST after reconstruction and prediction: half of the
pixels are missing and the other half noisy at test time.

that conditional DP-PCA obtain higher prediction errors on
Ŷtest than PLSR, it achieves lower errors both on X̂test and in
total, thus leading to the highest classification accuracy under
a larger budget.

D. Result Analysis

We now analyze the results in terms of degrees of freedom
(i.e., budgets) in the optimization process. The degrees of
freedom characterizes the number of free variables to be
optimized in each method. For independent, joint, and the
proposed DP- PCA, the budget equals the total number of
variables in U and V , that is, (M1+M2)⇥L. When it comes
to PLSR and CR, an additional budget of L2 is introduced
to learn the mapping between the paired data after dimension
reduction. In an ideal case such as two independent PCAs,
the degrees of freedom are proportionally split between the
observable part X and unobservable part Y at a ratio of
M1 : M2, and each part of the budget is optimally spent
to minimize the reconstruction errors, respectively. When one
set of variables Y becomes unobservable, the corresponding
part of the budget is dissipated while the other part for X
is utilized in a sub-optimal manner to also take into account
the correlation between the two sets. The proposed DP-PCA
ensures that the budget spent on the observable part is utilized
optimally such that it maximally captures the variance and
minimizes the reconstruction error. The other part of the
budget on unobservable Y , moreover, is consumed in the best
possible fashion for minimizing the reconstruction error given
the shared expansion coefficients. As far as the optimal Y
mode, all budgets are allocated to predict the unobservable
part Y . In practice, we may assume that M1 and M2 are
much larger than L. Thus, the majority of the degrees of
freedom (i.e., (M1 + M2) ⇥ L) in PLSR is allocated for
maximizing the covariance between the two sets. The method
does not explicitly capture variance or minimize reconstruction
errors for the observable part X , sometimes leading to higher
reconstruction errors on the observable part. On the contrary,
with a better correlation and extra budget of L2 on regression,
it tends to better predict the values of the unobservable part
Y . In Canonical Regression, the most critical L2 degrees of
freedom are reserved for correlation analysis in the sub-spaces

instead of starting from the original high-dimensional data,
leading to worse prediction than PLSR. In addition, although
dividing the inputs by their standard deviation appears to be
a valid strategy for data visualization and regression analysis,
it is less desirable for minimizing reconstruction errors.

V. CONCLUSION

In conclusion, we make the following statements: When
estimating coupled yet partially observable data using linear
models, one can achieve the lowest overall reconstruction
errors by applying standard PCA for the observable part X
and the optimal Y mode of the proposed unconditional DP-
PCA for the unobservable part Y . Such a combined approach,
however, requires two separate sets of bases, resulting in
longer computation time and larger storage. When the unob-
servable part Y is no more critical than the observable part
X , the proposed conditional DP-PCA approach can achieve
the lowest total error in estimation with a single pair of bases
at a fast speed.
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