
DeepSpaceProbing forPointCloudAnalysis
Yirong Yang, Bin Fan, Yongcheng Liu, Hua Lin, Jiyong Zhang

Xin Liu, Xinyu Cai, Shiming Xiang and Chunhong Pan
yangyirong2018@ia.ac.cn, bin.fan@ieee.org

Problem
3D point cloud is a collection of discrete points
which are consist of 3D location information (x,
y and z coordinates) and may along with other
features. These data are useful in autonomous
driving, augmented/virtual reality. However,
3D points distribute in a continuous 3D space
irregularly, thus directly adapting 2D image con-
volution to 3D points is not an easy job. Previ-
ous works often artificially divide the space into
regular grids, yet it could be suboptimal to learn
geometry.

Some Challenges
• GPU memory usage must be affordable.
• The convolution operation should be

equipped with multi-weight design.
• All subspaces should not be empty, in other

words, making full use of all weights.
• Can be equipped with abundant geometry.
• New convolution operation should be invari-

ant to input permutation.

Memory Analysis
Specifically, let B be the batch size, Nr be the
number of local regions of a SPConv layer, Np

be the number of points in each local region. Nk

be the number of weights shared by this layer.
Df in and Dout be the input and output feature
dimension. Suppose B = 32, Nr = 512, Nk = 5,
Np = 64, Din = 64, Dout = 64, and the weights
and feature maps are stored with single point
precision, the memory usage for saving kernels
are B×Nr×Np×Dfin×Dfout×4B = 16GB. To
reduce memory usage, many works have to use
sum pooling function to aggregate proposed
features. While we can easily implement our SP-
Conv in a memory efficient way(see the bottom
figure of "Pipeline" part), not restricting to the
sum pooling. We split the feature maps into
Nk portions rather than gather kernels for each
point. In this way, the memory usage for saving
kernels are Nk × Dfin × Dfout × 4B = 80KB.
Meanwhile, the memory usage for saving extra
feature maps are B ×Nr ×Nk ×Np×Dfin ×
4B+B×Nr×Nk×Np×Dfout×4B = 2.5GB.
It greatly reduces the memory usage than the
naive version.

Network
Now that SPConv can sufficiently learn from lo-
cal features, while point clouds analysis needs
global features. We use SPConv as the basis
block to build hierarchical neural networks like
PointNet++, and we name it Space Probing
Convolutional Neural Networks (SPCNN).

Acknowledgements
This research was supported by the Major Project
for New Generation of AI under Grant No.
2018AAA0100400, the National Key Research and De-
velopment Program under Grant No. 2016YFB0501100,
the National Natural Science Foundation of China
under Grants 61976208, 61773377, and the Young
Elite Scientists Sponsorship Program by CAST
(2018QNRC001).

The Pipeline of Space Probing Convolution
Our Space Probing Convolution uses points’ geometric features as input, and then a following shared
MLPs is used to calculate scores, which can be interpreted as the preference between each point
and each predefined weight. The score matrix can be discrete to a matrix that only has a integer 1
in each line and integer 0 for others. if a integer 1 in the jth column for the ith row, it means the
ith point matches the jth weight. A matrix multiplication operation will be implemented between
point features and corresponding weight. After that, a aggregate function and a bias will further
process the features.

In the naive implementation, each point will get a copy of weight function from the learnable weight
function pool, i.e., a group of weight functions, that will cost a large amount of memory. Therefore,
we use index to reconstruct mask matrix, which is the one-hot version of score (index, mask and
score are variables in the following figure). The points features, denoted as f , will be split into Nk

parts, where Nk is the number of weights in the weight pool, by point-wise producting with each row
of mask, and each part will be sent to corresponding feature processing network to further process.
After that, sum pooling function is used to restore the shape and thus obtain new features. In this
way, we can reduce memory usage efficiently and add no extra limits to convolution operation.

The Comprehension of Space Probing Convolution
The illustration of image convolution (left part) and our space probing convolution (right part). The
image pixels are arranged regularly, since image is a typical grid data structure, thus weight and pixel
have well-determined index correspondence. However, these index correspondences are unknown for
3D points, which distribute in a continuous 3D space irregularly. Accordingly, we generalize image
convolution by a geometry guided weight selection, which adaptively divides the space for geometric
learning in point clouds.

The key to our Space Probing Convolution (aliased as SPConv) is probing the nearby points to
adaptively select their corresponding convolution weight from a learnable weight pool. In this way,
SPConv adaptively partitions the 3D space into multiple subspaces, and the points located in each
subspace share the same weight for convolving features. It convert the grid space to a non-Euclidean
space. The right part of this figure is a visualization of space probing results.


