WHERE ARE MY BOXES?
SELF-SUPERVISED DETECTION AND POSE ESTIMATION OF LOGISTICAL OBJECTS IN 3D SENSOR DATA

For full process automation in Industry 4.0 with smart machines, localizing objects is a crucial capability. Enabling such an object localization with Machine Learning is tempting, as it avoids a manual engineering of features for every object class, yet gathering large amounts of accurate pose data to train neural networks can be just as difficult.

In this work, a novel self-supervised approach based on point clouds is presented, which resolves these issues and allows a robust detection and localization of objects in cluttered scenes, while compensating for noise, occlusions and symmetries. It leverages 3D sensor data simulation being simpler than light rendering to construct random scenes using a stochastic process by maintaining object relations with placement operations like cloning, stacking and storing, and to then train a fully convolutional voting network with random scans from those scenes.

In logistical scenes, objects of the same class tend to be placed next to each other, while stackable objects tend to be stacked, and storable objects tend to be placed inside a valid storage. To maintain these relations, the stochastic construction process iteratively builds a scene by cloning, stacking, and storing objects with reference to an already placed object using multivariate normal distributions.

The randomly generated scenes can be captured using any 3D sensor. Even though 3D data is generalizing much better than 2D data due to more accurate receptive fields and less lighting disturbances, the simulated sensor model should still reflect the real sensor as close as possible. This includes sensor noise and effects like missing values on too high ray angles on the surface.

The captures are then fed into a fully convolutional point-wise voting network to predict a classification, object location vote, and orientation point vote for each input point. The network architecture is based on KPFCNN [1], but with a replicated decoder for each of the three outputs. The outputs are further processed into object poses as shown on the right.

Results

![Graph showing normalized area over accuracy-threshold curve for Euro Box, Euro Pallet, Euro Keg, Small Package, Large Package, Pallet Jack, Fork Lift, comparing ours to PVN3D [2] on 3D data only, with iterative pose refinement.]

Class Partitioning

Location Vote Clustering [DBSCAN]

Orientation Vote Matching

Example for pose estimation result

---
