
Multi-annotator Probabilistic Active Learning
Marek Herde, Daniel Kottke, Denis Huseljic, Bernhard Sick

{marek.herde | daniel.kottke | dhuseljic | bsick}@uni-kassel.de

Intelligent Embedded Systems Group, University of Kassel, Germany

Multi-annotator Probabilistic Active Learning
Marek Herde, Daniel Kottke, Denis Huseljic, Bernhard Sick

{marek.herde | daniel.kottke | dhuseljic | bsick}@uni-kassel.de

Intelligent Embedded Systems Group, University of Kassel, Germany

Motivation

Situation: Training a classifier requires annotations, i.e., class
labels, for instances. The corresponding annotation process is
often costly due to its execution through human annotators.

Active learning (AL): AL aims at reducing these annotation
costs. Therefor, an AL strategy selects instances from which
the classifier is expected to learn the most.

Problem: Many AL strategies assume a single omniscient an-
notator who provides only correct annotations. This assump-
tion conflicts with the error-proneness of human annotators.

Task: Take multiple independent, error-prone, but benevolent
annotators into account. Therefore, an AL strategy must not
only select instances but annotators, too.

Contributions:
• We propose the AL strategy multi-annotator probabilistic ac-
tive learning (MaPAL). It estimates the annotation perfor-
mance of error-prone annotators as a function of instances.
Based on these annotation performance estimates, MaPAL
jointly selects an instance-annotator pair maximizing the
classifier’s expected performance.

• Comparisons of our AL strategy MaPAL to five related AL
strategies in an experimental evaluation over various data
sets show MaPAL’s superior and robust performance.

Structure of MaPAL

MaPAL’s objective: Specification of the optimal data set, such that the classifier’s misclassification risk is minimal
given a fixed budget of annotation acquisitions. Since it is hardly possible to specify the annotation process for obtaining
the optimal data set in advance, MaPAL aims at approximating the optimal solution through a greedy approach.

Cycle iteration: The data set is updated iteratively by executing a cycle, as shown by the plot below. MaPAL selects one
instance-annotator pair per cycle. As a result, the selected annotator provides a class label for the selected instance, and
the current data set is updated accordingly. To perform this selection, MaPAL consists of the following three components:

• The instance utility function quantifies the
benefit of annotating an instance for training a
classifier. MaPAL builds upon the probabilistic
active learning (PAL) framework, which esti-
mates the classifier’s performance gain when
annotating an instance.

• The annotation performance function as-
sesses the quality of the available annotators.
Therefor, MaPAL uses the proposed Beta an-
notator model (BAM), which estimates an an-
notator’s probability of providing the correct
class label for an instance.

• The selection algorithm relies on the in-
stance utility and annotation performance func-
tion to select an instance-annotator pair maxi-
mizing the classifier’s expected performance.

Visualization of MaPAL

The eight plots on the right visualize MaPAL’s annotation acquisition behavior after 50
actively acquired annotations: All of them show the same two-dimensional toy data set with in-
stances of two classes (blue vs. red). There are four simulated annotators with instance-dependent
annotation performances (i.e., the probability of providing a correct annotation dependent on the
features of an instance).

The four upper plots show the annotation performance values estimated by the BAM.
The black lines represent the classifiers’ decision boundaries used to assess the quality of the
corresponding annotator. We notice low annotation performance estimates in regions where an
annotator provided false annotations indicated by encircled crosses.

The four lower plots show the instance utility values as a function of each annotator. The
black lines represent the decision boundary of the classifier using the current data set. We
observe high utility values in dense regions near the classifier’s decision boundary, provided that
the annotation performance values of the corresponding annotators are high. This way, MaPAL
queries annotators in regions with sufficient annotation performance estimates.

Data Sets

We conducted experiments on 29 data sets. Four of these data sets were
annotated by real-world annotators. For each of the remaining 25 data
sets, we employed three techniques to simulate annotators with differ-
ent assumptions regarding their annotation performances, i.e., uniform,
class-dependent, and instance-dependent performances. The num-
ber of annotators varied between four to six across all data sets.

In our repository https://github.com/mherde/mapal, more de-
tails on the simulation procedures are given. Moreover, we list all used
data sets, including their references, and provide specific characteristics
such as the number of instances, features, instances per class, and the
annotators’ actual mean annotation accuracies.

We compared MaPAL to five related AL strategies, namely IEThresh,
IEAdjCost, Proactive, CEAL, and ALIO. As a baseline AL strategy,
we implemented Random randomly selecting instance-annotator pairs.

Experimental Setup

Each experiment, i.e., testing an AL strategy on a data set, was run 100
times. In each run, we randomly split the data set into a training set
consisting of 60% of the instances and a test set containing the remaining
40%. The training set did not include any annotations at the start of
each run. We stopped the annotation process if a strategy acquired either
40% of the available annotations or reached the limit of 1000 annotation
acquisitions.

For classification, we employed a kernel-based classifier adjusted to
the multi-annotator setting to learn despite partially incorrect annota-
tions.

For two data sets, namely compendium and mozilla, we employed the
cosine similarity kernel because both data sets deal with text classifi-
cation. For the remaining data sets, the classifier used the radial basis
function as a kernel.

Results

Learning curves represent a common way to compare
AL strategies regarding their performances. The right
plots show the learning curves for the data set segment.

The upper plot of learning curves indicates the test mis-
classification rate after each annotation acquisition.
Comparing MaPAL’s learning curve to the other strate-
gies, we observe the superiority of MaPAL, which con-
verges fast to a low misclassification rate.

The superior performance of MaPAL is also shown by
the lower plot of learning curves counting the number
of false annotations after each annotation acquisi-
tion. The performance estimates of the BAM supported
MaPAL in acquiring less false annotations.

We computed the area under the learning
curve (AULC) of the test misclassification rate for
each run of an experiment. As a result, there were 100
AULC values for each AL strategy per data set. We
ranked these values between the same runs of the dif-
ferent AL strategies and averaged the ranks for each AL
strategy.

We visualize the resulting mean ranks taken over all
data sets of an annotator group (i.e., uniform, class-dep.,
instance-dep., and real-world) per AL strategy in the left
plot: dark green means good rank, whereas light green
means bad rank.

For example, MaPAL has an average rank of 2.18
over the 25 data sets with simulated annotators hav-
ing instance-dependent performances. The triples below
the ranks of MaPAL’s competitors count the number
of MaPAL’s wins/ties/losses compared to the corre-
sponding competitor, e.g., MaPAL outperformed CEAL
on four of four data sets with real-world annotators.

