On Resource-Efficient Bayesian Network Classifiers and Deep Neural Networks

Wolfgang Roth 1 , Günther Schindler 2 , Holger Fröning 2 , and Franz Pernkopf 1

Der Wissenschaftsfonds.

 1 {roth,pernkopf}@tugraz.at, 2 {guenther.schindler,holger.froening}@ziti.uni-heidelberg.de

¹ Signal Processing and Speech Communication Laboratory, Graz University of Technology
² Institute of Computer Engineering, Ruprecht Karls University, Heidelberg

Summary

- Reduce model complexity of Bayesian network classifiers
 - Transfer techniques from deep learning [1] to Bayesian networks
- Method 1: Model-size-aware TAN structure learning
 - Apply differentiable TAN structure learning from [2]
 - √ Structure learning using backpropagation
 - New extension: Trade off between accuracy and model size
- Method 2: Quantization-aware Training
 - Quantize log-probabilities (CPTs) to few bits
 - Apply straight-through gradient estimator
- Comparing Bayesian networks and deep neural networks

Bayesian Network (BN) Classifiers

lacksquare BNs define a factorization of a joint distribution via a directed acyclic graph $oldsymbol{\mathcal{G}}$ as

$$p(X) = \prod_{i=1}^D p\left(X_i | \operatorname{pa}(X_i)
ight)$$

- lacksquare This work: Discrete features X_i
 - lacksquare Parameters: Conditional probability tables (CPTs) $oldsymbol{ heta}$
- lacksquare Classification: Additional distinct class variable $oldsymbol{C}$
 - Classify according to $\operatorname{argmax}_c \log p(\mathbf{x}, c)$
 - lacktriangle Classification requires only $(D+1)\cdot \#(\text{classes})$ additions in log-domain

Naive Bayes vs. tree-augmented naive Bayes (TAN)

- √ Few operations
- Accuracy

- X_1 X_2 X_3 X_4
- ✓ Accuracy
- √ Few operations
- Model size depends on structure
- Many possible TAN structures ⇒ structure learning

Model-Size-Aware TAN Structure Learning

- lacksquare Encode TAN graph ${\cal G}$ using one-hot vectors ${f s}=({f s}_1,\ldots,{f s}_D)$
- lacksquare CPTs for all possible parents: $\Theta = \{ heta_c \} \cup \{ \Theta_1, \ldots, \Theta_D \}$

 \blacksquare Treat parameters Θ and structure s jointly

$$\log p(X,C) = \log p_{ heta_c}(C) + \sum_{i=1}^D \sum_{j=0}^{i-1} s_{i|j} \log p_{ heta_{i|j}}(X_i \, | \, X_j,C)$$

- lacksquare Continuous relaxation of one-hot \mathbf{s}_i results in probabilities Φ_i
 - lacksquare Probabilities $\Phi = (\Phi_1, \dots, \Phi_D)$ define a distribution over TAN graphs ${\mathcal G}$
 - Optimize expectation with respect to Φ and take most probable graph \mathcal{G} $\mathcal{L}_{\mathrm{SL}}(\Phi,\Theta) = \mathbb{E}_{\mathbf{s}\sim p_{\Phi}}\left[\mathcal{L}(\Theta,\mathbf{s})\right] \qquad \text{(proposed in [2])}$
 - lacksquare $\mathcal{L}_{\mathrm{SL}}$ is differentiable with respect to $\Phi\Rightarrow$ optimize with backpropagation
- This work: New term penalizes number of parameters

$$\mathcal{L}_{\mathrm{SL}}^{\mathrm{MS}}(\Phi,\Theta) = \mathcal{L}_{\mathrm{SL}}(\Phi,\Theta) + \lambda_{\mathrm{MS}} \mathcal{E}_{\mathrm{S}\sim p_{\Phi}}[\mathcal{L}_{\mathrm{MS}}(\mathrm{s})]$$

Quantization-Aware Training

- BNs: Quantize log-probabilities to negative fixed-point values $Q_{\rm BN}(\theta) = {\rm clip}({\rm round}(\theta \cdot 2^{B_F}) \cdot 2^{-B_F}, \ -U, \ 0)$
- DNNs: Quantize weights according to [3]

$$egin{align} Q_{ ext{DNN}}(w) &= Q\left(rac{ ext{clip}(w,\ -1,\ 1)+1}{2};B
ight)\cdot 2-1 \ Q(v;B) &= rac{1}{2^B-1}\cdot ext{round}((2^B-1)\cdot v) \ \end{pmatrix}$$

- The gradient of quantization functions is zero almost everywhere
- Apply the straight-through gradient estimator [4] during training

At backpropagation: Pretend that the gradient of a quantization function is non-zero

Experiments: Model-Size-Aware TAN Structure Learning

Effective trade-off between accuracy and model size

Experiments: Quantization-Aware Training

Comparing quantized DNNs and quantized BN classifiers

- BNs: ✓ few operations ✓ decent accuracy
- CNNs: ✓ best accuracy ✓ few parameters ∮ many operations
- fully connected DNNs: ✓ flexible trade-offs

References

- [1] Roth et al., Resource-Efficient Neural Networks for Embedded Systems, arXiv:2001.03048
- [2] Roth and Pernkopf, Differentiable TAN Structure Learning for Bayesian Network Classifiers, PGM 2020
- [3] Zhou et al., DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients, arXiv:1606.06160
- [4] Bengio et al., Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation, arXiv:1308.3432
- [5] Tschiatschek et al., Integer Bayesian Network Classifiers, ECML 2014