
Transformer Networks for Trajectory Forecasting Giuliari Francesco, Cristani Marco - University of Verona. {name.surname}@univr.it

Hasan Irtiza - Inception Institute of Artificial Intelligence. irtiza.hasan@inceptioniai.org Galasso Fabio - Sapienza University of Rome. galasso@di.uniroma1.it

No loss of the former t

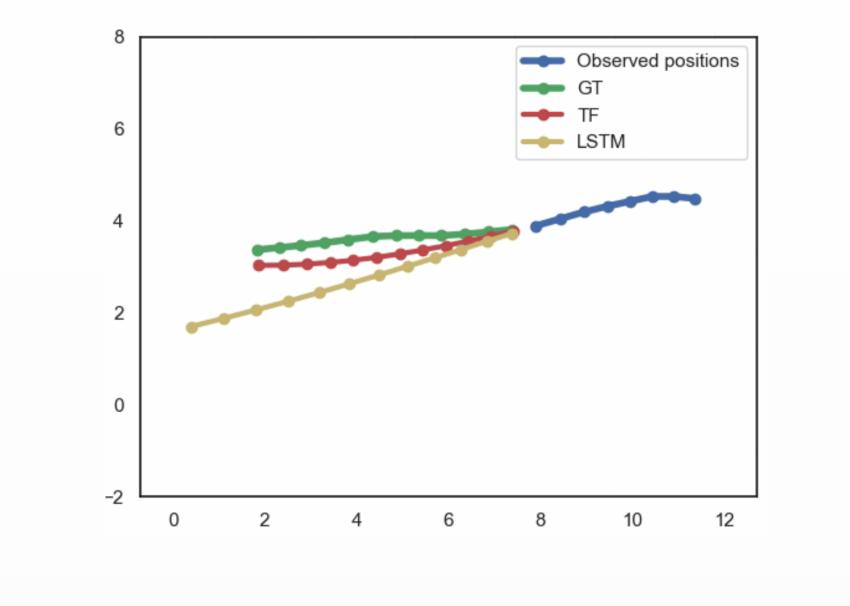
• No distinction between observed values

 And previous predictions Prediction errors are fed back into the network and amplify over time 	 No loss of information Different treatment to observed values and previous predictions 		TrajNet Challenge results (world plane Human-Human).				
	 Prediction errors can be kept in check 	Method		FAD	MAD	Needs social cues	
Models		TF		1.197	0.356	no	
Ma propose two models based on The Transform	N Notreoule[1]	REDv3		1.201	0.360	no	
We propose two models based on The Transforme	SR-LSTM	1	1.261	0.37	yes		
$ \begin{array}{cccc} input & output \\ \hline \Delta x_{t-n} & \cdots & \Delta x_{t-1} \\ \Delta y_{t-n} & \cdots & \Delta y_{t-1} \end{array} & \begin{array}{c} & \Delta x_t & \Delta x_{t+1} \\ \Delta y_t & \Delta y_{t+1} \end{array} \\ \hline & & \Delta y_t & \Delta y_{t+1} \end{array} $	Velocity vectors Velocity vector	S.Forces	(ewap)	1.266	0.371	yes	
	$\Delta x_{t-n} \dots \Delta x_{t-1}$ $\Delta y_{t-n} \dots \Delta y_{t-1}$ $Clustering$ $input$ $P(C1)$ $Sampling$ $Clustering$ $Ck \dots Cj$ $Ck \dots Cj$ $Ck \dots Cj$ $Clustering$ $Ck \dots Cj$ $Clustering$ $Clustering \dots Clustering$ $Ck \dots Cj$ $Ck \dots Cj$ $Ck \dots Cj$ $Ck \dots Cj$ $Clustering \dots Clustering$ $Clustering \dots Clustering$ $Clustering \dots Clustering \dots Clustering$ $Clustering \dots Clustering \dots Clustering $	TF_q		1.300	0.416	по	
		BERT		1.354	0.440	по	
		BERT_NI	$P_pt.$	1.357	0.447	по	
	$\begin{array}{c} a_{3} \\ a_{0} \\ a_{3} \\$	MX-LST	N	1.374	0.399	yes	
		S.Forces	(attr)	1.395	0.412	yes	
	TFq	LSTM		1.793	0.491	no	
		S-GAN		2.107	0.561	yes	
TF for Accurate Single trajectory prediction	$\mathbf{TF}_{\mathbf{q}}$ for Multi modal predictions	Blue italic	indicates	s avvroa	ches proi	posed in this	
 Regression model 	 Quantized version of TF 	work.					
• Input: Sequence of Velocity vectors	• Input: Sequence of velocity clusters ids						

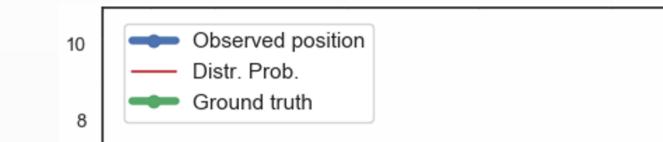
- *Output:* Sequence of predicted velocity vec-
- *Output:* Probabilities over the velocity clus-

ters

Multi Trajectory prediction: ETH+UCY

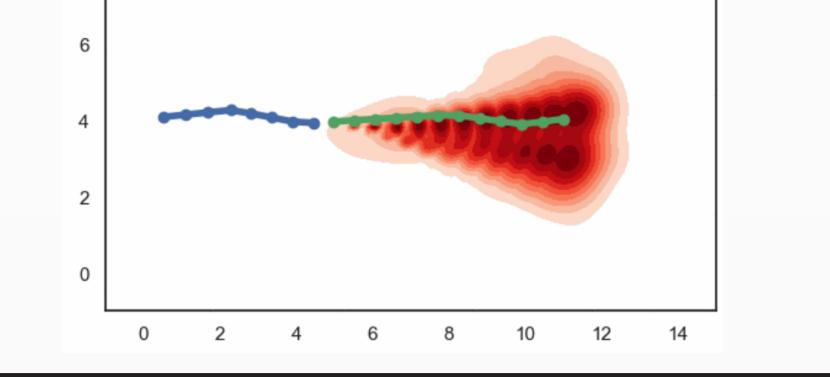

Comparison against SoA models following the best-of-20 protocol. Results are reported as MAD/FAD, with the standard protocol of 8 observation and 12 predictions.

Architecture		TF-based				
Used Features	Individual	Social		Soc.+ map	Ind.	
Method name	S-GAN-ind	S-GAN	Trajectron++	Soc-BIGAT	TF_{q}	
ETH	0.81/1.52	0.87/1.62	0.35/0.77	0.69/1.29	0.61 / 1.12	
Hotel	0.72/1.61	0.67/1.37	0.18/0.38	0.49/1.01	0.18 / 0.30	
UCY	0.60/1.26	0.76/1.52	0.22/0.48	0.55/1.32	0.35 / 0.65	
Zara1	0.34/0.69	0.35/0.68	0.14/0.28	0.30/0.62	0.22 / 0.38	
Zara2	0.42/0.84	0.42/0.84	0.14/0.30	0.36/0.75	0.17 / 0.32	
Avg	0.58/1.18	0.61/1.21	0.21/0.45	0.48/1.00	0.31 / 0.55	


Only S-GAN-ind uses the same amount of information as our TFq, the other methods are reported for the sake of comparison against more complex methods.

Qualitative results

Our **TF** is able to predict the motion with much higher accuracy than standard LSTM based models.


Our **TF**_q can predict true multi-modal trajectories in a true data-driven manner, with no information about the underlying distribution.

References

tors

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, u., Polosukhin, I. (2017). Attention is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 6000-6010).

Acknowledgements

This work is partially supported by the Italian MIUR through PRIN 2017 - Project Grant 20172BH297: I-MALL - improving the customer experience in stores by intelligent computer vision, and by the project of the Italian Ministry of Education, Universities and Research (MIUR) "Dipartimenti di Eccellenza 2018-2022".